EP 0 667 579 A1

Europdisches Patentamt
® 0 European Patent Office

Office ehropéen des brevets

() Publication number:

ROV

0667 579 A1

® EUROPEAN PATENT APPLICATION

@) Application number: 94202313.6

@ Date of filing: 12.08.94

@ int. C15. GOBF 12/08

@) Priority: 09.02.94 US 193991
09.02.94 US 194104

@ Date of publication of application:
16.08.95 Bulletin 95/33

Designated Contracting States:
ATBECHDEDKESFRGBGRIEIT LI LUMC
NL PT SE

@ Applicant: Ballard Synergy Corporation
10715 Silverdale Way, No. 208
Silverdale,

Washington 98383 (US)

® Inventor: Ballard, Clinton L.

4721 NW Blackhawk Court
Bremerton, '
Washington 98312 (US)

Representative: Smulders, Theodorus A.H.J.,

Ir..et al

Vereenigde Octrooibureaux
Nieuwe Parklaan 97

NL-2587 BN 's-Gravenhage (NL)

& Cache for optical storage device. N

@ A cache (100) for improving access to optical media (70) includes a primary cache (102) comprising RAM
(88) and a secondary cache (104) comprising a portion of hard disk memory (60). Multiple aspects of the
invention are defined: (1) Cache data discrimination: Discrimination methodology is implemented for determining
when data should not be cached. Under certain conditions, caching of data is less likely to improve access time.
(e.g., when the transfer rate is already exceeding a critical sustained throughput rate; when an estimated time to
complete a CD-ROM data request is within a specific percentage of the estimated time to complete a hard drive
disk request). (2) Secondary cache fragmentation avoidance: To keep the access time to secondary cache faster
than the access time to the optical media, fragmentation of the secondary cache (104) (i.e., hard disk (60)) is
minimized. To do so, constraints are imposed: (i) an entire CD-ROM request is stored in contiguous sectors on
the hard drive; (i) sequential CD-ROM requests to adjacent sectors of CD-ROM (70) are concatenated on the
hard drive (60); (iii) data redundancy is permitted; and (iv) first-in first-out criteria is used for overwriting data. (3)
Alternative update methodologies: Cache updates are performed in sequence or in parallel to primary (102) and
secondary (104) cache depending upon the embodiment. (4) Data integrity: Integrity of data stored in non-
volatile secondary cache (104) is maintained for a substantial portion of secondary cache through power failures,
shutdowns and media swaps.

FIG3
/IW -
A n
NNNNN B NNNN i
] . .

Rank Xerox (UK} Business Services
13.10/3.09/3.3.4)

EP 0 667 579 At

. /n u Q H 8 a
o i R by U111 L] v
I I I /S B i 3
< mnu jj ﬂm ” 0 @
. e [
L] » 4 o -
< jwm . 2 g ' M P
P B3 1Y f 4 % 1 L]
] [EF] =AY IR I
hont H
” C 'mws«wfmm) :2
I 5 "
g e |
— "
F[C’ < r KIPAII.W.VBIIS{c;.flS_l.ll'su:d)I y >
:\Ig"m B | B | [V'
)
| aam Y et W?l /“ WI /"
DA DRIVE . m STORACE DEVICR

»-

10

15

20

25

30

35

45

50

55

EP 0 667 579 A1

NOTICE REGARDING COPYRIGHTED MATERIAL

A portion of the disclosure of this patent document contains material which is subject to copyright
protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent -
document or the patent disclosure as it appears in the public Patent and Trademark Office fnle or records,
but otherwise reserves all copyright rights whatsoever.

BACKGROUND OF THE INVENTION

This invention relates to cache subsystems for improving access to data stored on a mass storage
device. More particularly this invention relates to a cache subsystem, including a hard disk drive, for
improving "access time” for information stored on an optical storage device.

Access time, in the context of microcomputer memory handling, is the time it takes a memory system
to present information to a microprocessor after an address has been selected. Cache is a memory
subsystem for improving access time to data stored in main or "mass” memory. The cache subsystem
characteristically comprises memory having a faster access time than main memory. It is by duplicating
frequently-accessed main-memory’ data values in cache memory that access times for such data is
improved.

There are several types of main memory sources in conventional microcomputers. Sources include
floppy disks, hard disks and optical storage media. Caches comprising random access memory (RAM) are
common for improving access time to data stored on such disks or media. RAM has an access time of
approximately 150 nano-seconds (ns). This is several orders of magnitude faster than access times for
mass storage devices. For example, access time for a conventional PC floppy disk drive is on the order of
seconds. Access time for a conventional PC hard drive is approximately 12-60 milliseconds (ms). Compact
disk read only memory (CD-ROM), one form of optical storage media, has a storage capacity of
approximately 680 megabytes and an access time of approximately 300-1000 ms. Top of the line CD-ROM
drives advertise access times down to 265 ms.

When RAM prices were speculated to significantly decrease, discussion of main memory systems
comprising RAM were considered by chip manufacturers. Such price decreases have not occurred. To the
contrary, the relative expense of RAM makes it a precious resource in the computer. It is currently
unfeasible to dedicate tens of megabytes of RAM to serve as a high-capacity cache. According to this
invention, however, it is desirable to define a high- capacuty cache for improving access times for CD-ROM
or other high capacity optical media.

Programmers typically optimize information layout on a CD-ROM to achieve the current CD-ROM
access times. Straight sequential access of optical media as during video playback or audio playback
typically can occur within desired specifications to provide a user with acceptable visual and sound quality.
When random sesks, however, are interspersed with full-motion video and/or sound, performance (i.e.,
average access time) degrades. For typical multimedia and hypermedia applications, audio/video data is
interspersed with program and/or graphics data. In a conventional CD-ROM encyclopedia application, a user
may spend 90% of the time accessing program and graphics data and just 10% of the time accessing
audio-video or animation data. (The CD-ROM itself may comprise 50% data and 50% video/audio due to
the storage intensiveness of video/audio.) A conventional CD-ROM drive meeting multimedia specifications
requires a sustained throughput rate of 150 KB/second. It is the occasions when random seeks are
interspersed with the full motion video or animation that problems typically arise. Using a conventional RAM
cache of approximately 256 KB, the cache will fill with audio-video data very quickly. There already is
significant contention for the RAM resources by the operating system. Using all of the available cache for
maintaining full motion video would be unacceptable. Accordingly, a larger high-capacity cache is needed.

As RAM costs approximately $80/MB in 1994, implementation of a high-capacity cache would run
approximately $1600 for merely a 20 MB ‘high-capacity cache. Such an implementation is unfeasible.
Accordingly, there is a need for an alternative structure for implementing a CD-ROM cache. In particular,
there is a need for a more cost-efficient, yet technically-effective high-capacity cache structure.

Under conventional microcomputer operating conditions, a cache improves access time some of the
time. Of significance is that there are transient periods during which the cache is not improving microcom-
puter performance. This is bscause conventional cache implementation methodologies call for caching
substantially all data transfers. This is inefficient. It is generally accepted that 80-90% of computing time is
spent processing 10-20% of the code/data, while the other 10-20% of the time is spent processing the other
80-90% of the code/data. It is for the frequently executed 10-20% of code/data that a cache provides

"increased performance. Caching the remaining code/data leads to littls, if any, performance increase. In a

15

20

25

30

35

50

55

EP 0 667 579 A1

CD-ROM application, however, caching this other 80% of the code/data may consume a significant portion
of cache resources. For a high-capacity cache it is too costly to allocate tens of megabytes of space to this
80-30% of code/date that is infrequently accessed. Accordingly, there is a need for a more effective cache
implementation which optimizes cache usage. .

As described in the summary of invention and detailed description, applicant's cache, according to
several embodiments, includes a portion of hard disk memory. A hard disk drive provides access times
generally 10 times faster than CD-ROM access times. However, when data files stored on a hard disk are
fragmented, hard drive access performance degrades. If the degradation causes access to be no faster than
access to a CD-ROM, there is no point in using the hard disk as a cache. Accordingly, it is desirable to

‘minimize fragmentation of a hard disk area being used for cache.

As a high capacity cache will take a significant period of time to fill up, it is desirous to preserve the
cache contents in the event of media changes (e.g., CD-ROM changes) and power shutdowns. Accordingly,
there is a need for a non-volatile cache and a need for associating stored data with a particular CD-ROM.

SUMMARY OF THE INVENTION

According to the invention, a cache for improving access to optical media includes a primary cache and
a secondary cache wherein the primary cache is formed by RAM and the secondary cache is formed by a
portion (i.e., all or less than all space) of a hard disk memory.

According to-ons aspect of the invention, discrimination methodology is implemented for determining
when optical media data should not be cached. Under certain conditions, caching of data transfers does not
improve access to optical media data. For example, if a data transfer from CD-ROM exceeds a critical
sustained throughput rate, then caching is not likely to improve access time. Thus, such transfer is not
cached. Under an alternate condition, if the estimated time to complete an optical media data request is
within a specific percentage of the estimated time to complete a hard drive disk request, then the bensfit
may be insignificant. Again, such request is not cached.

According to another aspect of the invention, fragmentation of data stored on the hard disk portion of
cache is minimized by imposing storage constraints. As fragmentation deteriorates hard drive access time,
fragmentation is minimized and avoided. To do so, entire CD-ROM requests are stored in contiguous
sectors on the hard drive. Also, sequential CD-ROM requests to adjacent sectors of the CD-ROM are
concatenated on the hard drive, so that the multiple CD-ROM requests are stored in contiguous sectors of
the hard drive. Data redundancy in the cache is even permitted because it leads to avoidance of
fragmentation. Redundant data is stored when the data already exists in cache among overlapping (i.e., in
two or more stored requests), non-aligned (i.e., starts at different location than either of overlapping

requests) storage requests. Lastly, compounding fragmentation symptomatic of conventional discard

schemes is avoided by implementing first-in first-out criteria for overwriting cache locations.

According to another aspect of the invention, cache updates are performed in parallel to both primary
and secondary cache.

According to another aspect of the invention, data stored in cache is associated with a specific optical
disk to avoid invalidating data when optical disks are changed and rechanged. Specifically, a tag is defined
for each sector of optical disk stored in cache. The tag is formed by combining the data's optical disk
sector number with an index corresponding to an assigned optical disk number. The optical disk number is
assigned from root directory and header information unique to the optical disk.

According to another aspect of the invention, integrity of data stored in non-volatile secondary cache is
maintained across power failures and shutdowns. According to a preferred embodiment, all cached data in
non-volatile memory is valid upon recovery except a relatively small portion (e.g., 254 KB out of 20 MB or

larger cache file).

According to alternative embodiments of the invention, technologies other than the preferred RAM and
hard disk structures can be used for primary cache and secondary cache. The constraint for defining the

structural technologies is that the primary cache have an access time as fast or faster than secondary

cache and that the secondary cachs have sither one or both of a faster access time or faster transfer speed
rating than the optical storage device. For example, flash memory or bubble memory could be used for
primary cache, while flash memory, bubble memory or a faster read-write optical drive could be used for
secondary cache. According to another embodiment, a single level high-capacity cache (e.g., portion of
hard disk drive) is implemented for accessing an optical media.)

One advantage of this invention is that average data access times for optical media can be improved for
many -microcomputer multimedia, hypermedia, animation and other video, audio-video and graphical
applications. Another advantage is that the cache structure can be implemented with existing resources on

20

25

30

35

50

55

EP 0 667 579 A1l

a microcomputer by allocating a portion of system RAM and a portion of a user's hard drive. Cache
implementation software dsfines the cache structure and controls operation. By implementing a high-
capacity cache filled up over a period of hours or weeks and maintaining the integrity of cache data across
shutdowns and CD-ROM swaps, performance improvements are maintained over the long term, (rather than
following a latent period of use after each "power on™ or "media swap"). Accordingly, a cost-efficient,
technically-effective cache is implemented for improving access times for optical storage media.

The invention, its aspects and advantages will be better understood by reference to the following
detailed description taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a block diagram of an exemplary microcomputer system environment for hosting the optical
media cache of this invention.

Fig. 2 is a block diagram of the memory subsystem and processor of the environment of Fig. 1.

Fig. 3 is a block diagram of the optical media cache according to one embodiment of this invention. .

Fig. 4 is a block diagram of a CD-ROM cache embodiment of this invention.

Fig. 5 is a diagram of track layout for a CD-ROM.

Fig. 6 is a flow chart of the cache implementation software according to one embodiment of this
invention. '

Fig. 7 is a flow chart of data discrimination processing according to one embodiment of this invention.

Fig. 8 is a flow chart of data discrimination processing according to another embodiment of this
invention. '

Fig. 9 is a flow chart of data discrimination processing according to yet another embodiment of this
invention. ’

" Fig. 10 is a diagram showing the relationship betwsen a transfer key variable and (j) a directory of CD-
ROM identification codes, (i) CD-ROM sector layout and (jii) hashing tables, according to an embodiment of
this invention.

Fig. 11 is a flow chart of cache update processing according to a parallel update embodiment of this
invention.

Fig. 12 is a flow chart of cache update processing according to a two-stage update embodiment of this
invention. .

Fig. 13 is a logical diagram of the cache file according to one embodiment of this invention.

DESCRIPTION OF SPECIFIC EMBODIMENTS

Exemplary Environments for the Optical Media Cache

Fig. 1 shows a microcomputer system architecture 10 which would benefit from the optical media cache
of this invention. The microcomputer 10 includes a central processing unit 20, -system memory (e.g., 22,24),
multiple communication busses 12, 14, 16, 18 and several system components and peripherals. The
microcomputer 10 may be a work station, personal computer, or any of several other standardized and
proprietary general purpose or embedded microcomputers. The number and types of communication
busses, system components and peripherals may vary. For the microcomputer 10 shown, there is a
processor bus 12, local bus 14, /O bus 16 and expansion bus 18. A CPU 20, external cache 22 and system
RAM 24 are located on the processor bus. An /O bus 16 is linked to the processor bus 12 for interfacing to
I/Q ports. A printer 26 and pointing device 28 (e.g., mouse) typically are coupled to the I/O bus 16 via I/O
ports (not shown).

A local bus 14 is linked to the processor bus 12 via a local bus interface 30. Exemplary local busses
are the video local (VL) or VESA-standard bus, the peripheral component interface (PCl) bus and the NU-
BUS. The PCI bus, for example, may couple ‘'up to 10 peripheral devices. lllustrated are a graphics

" controller 32, video processor 34, video capture/output card 36 and a sound card 38. Such peripherals are

used in multimedia and audio-video production systems. Speakers 40 and a microphone 42 are linked to
the sound card. A camera 44 (s.g., camcorder), VCR 46 and TV 48 are linked to the video capture/output
card 36. The video subsystems 32, 34, 36 typically share a local memory resource (i.e., frame buffer or
video RAM) 50. Information is passed to a display 52 from the video subsystems and shared memory 50
via a video DAC 54.

An expansion bus 18 is linked to the processor bus 12 via the local bus 14 and an expansion bus
interface 56. Peripherals, system components and mass storage devices typically are coupled to thé

10

15

20

25

30

35

45

50

55

EP 0 667 579 Al

expansion bus 18. Shown are a drive controller 58 coupling to a hard disk drive 60 and a floppy disk drive
62, a tape controller 64 coupling to a tape drive 66, a SCSI controller 68 coupling to an optical storage
device 70 or other SCSI peripheral, and a faxmodem 72. As an alternative to the SCSI ‘controller 68, any of
several propristary controllers also may couple to an optical storage device 70. According to other
architectures the hard drive 60 and/or the optical storage device 70 (e.g., CD-ROM) and there respective
controllers instead may be coupled to the local bus 14.

In summary, the optical media cache of this invention may benefit many alternative single or multiple
microprocessor based architectures 10, including proprietary work stations, personal computers, PENTIUM
machines, APPLE MACINTOSH machines, and other machines currently available or to come based on the
Inte] 80X86 architecture, Motorola 68XXX architecture, other CISC processor architectures, and oncoming
RISC processor and multiprocessor architectures.

Memory Subsystem and Optical Media Cache

Fig. 2 shows an exemplary memory subsystem 80 supporting the CPU 20 of architecture 10. In one
embodiment, the CPU 20 includes a processing unit 82, registers 84, a memory management unit 86 and
an internal cache 88. A memory subsystem includes system RAM 88, external cache 90 and mass storage
devices 92. The mass storage devices 92 shown include CD-ROM 70, hard disk drive 60 and floppy disk
drive 62. Access times to data increase in order among the following storage mechanisms: registers 84,
internal cache 86, external cache 90 and RAM 88, hard drive 60, CD-ROM 70, and floppy drive 62. Thus,
data from a mass storage device 92 typically is transferred into RAM 88 or external cache 80 then internal
cache 88 and registers 84 for access by the processor 82. More specifically, high throughput processing is
best achieved by having data already in internal cache 88, external cache 90 or RAM 88 when the
processor 82 needs it.]

According to one embodiment, the optical media cache 100 of this invention is implemented using RAM
88 (and/or external cache 90) and hard disk drive 60. As shown in Fig. 3, a portion of RAM 88 is allocated
to serve as a primary cache 102 and a portion of hard disk drive 60 is allocated to serve as secondary
cache 104. The function of the optical media cache 100 is to improve access time to data stored on a CD-
ROM or other optical media data source 70.

According to alternative embodiments of the optical media cache, other technologies can be used for
primary cache 102 and secondary cache 104 than the preferred RAM 88 (and/or external cache 90) and
hard disk 60 structures. The constraint for defining the cache levels is that the primary cache 102 have an
access time as fast or faster than the secondary cache 104 and that the secondary cache 104 have a faster
access time than the optical medium 70. For example, flash memory or bubble memory could be used for
primary cache 102, while flash memory, bubble memory or a faster read-write optical drive could be used
for secondary memory 104. According to yet another embodiment the smaller primary cache may be
omitted in lisu of a single-level high-capacity cache structure. "

According to a preferred embodiment, the primary cache 102 provides 0.5 MB to 2 MB of storage,
while the secondary cache 104 provides at least 10 MB of storage (e.g., 20 MB to 140 MB). For the
structure of Fig. 3, the secondary cache 104 is formed from an area of hard drive 60. For a DOS-based
machine, such area is formed as a DOS file or a DOS partition. According to other operating systems, the
area may be formed by a file, object or other operating system or user mechanism for dedicating address
space to the secondary cache 104. Regardless of the operating system, it is preferable when possible that
physical address space be allocated as secondary cache 104 so that the cache implementation software
can avoid fragmentation of stored data.

Problems Addressed and Solutions Derived

In deriving the optical media cache, several problems were addressed, such as how can an optical
media's average access time be improved in light of the advancing needs of multimedia, hypermedia, video
and animation applications. According to the invention, access time is improved by implementing a cache
structure. Due to the cost-effectivenéss of hard drives and the expense of RAM, a dual level cache structure
comprising a smaller primary RAM cache and larger secondary hard drive cache is preferred. Using the

- 80/10 or 80/20 rule of thumb, 80% (80%) of the time is spent using 10% (20%) of the data. Thus, for a 680

MB CD-ROM, 68 MB or 136 MB is expected to serve as an adequate cache capacity. A secondary cache
capacity of approximately 100 MB is preferred (or more generally, a capacity between 20 MB and 140 MB
is preferred).

10

15

20

25

30

35

45

50

55

EP 0 667 579 A1

Several implementation problems of a high-capacity hard drive cache also are addressed by this
invention. To optimize performance it would be useful to cache only the frequently accessed data. In
addition, for a hard drive to be effective as a cachs, it needs to maintain a faster access time than the
optical media. According to conventional caches used for improving access to a hard disk, all data transfers
are cached. As a result, the conventional cache improves performance only some of the time. If all CD-
ROM transfers were cached, the primary cache and even the secondary cache would become cluttered with
some of the 80% (80%) of the data that is only accessed (on average) 10% (20%) of the time. Such an
implementation raises concerns as to whether performance deteriorates once the secondary cachs is filled
and overwritten; and whether the optical media cache expense precludes a less than optimal implementa-
tion. These concerns are dealt with by addressing the problem of how can the hard drive be implemented
as a cache in an effective manner. Another problem addressed is how can CD-ROM access time be
improved over an extended period of use.

To implement the hard drive as a cache in an effective manner, data discrimination methodologies are
adopted. Specifically, conditions are defined for determining when not to cache ‘optical media data transfer
requests. In brief, it is intended that transfers not be cached when caching does not improve performance.
Ideally, the data not cached would be the data accessed during that 10% (20%) of the time.

To maintain the hard drive at a faster access time and/or transfer rate than the CD-ROM over an
extended: period of use, storage constraints are defined. Specifically, there is a problem with fragmenting
storage in a hard drive. If the cached data is fragmented, then the access time to such data increases. It
may increase to the point that the 10:1 advantage in access time favoring the hard drive deteriorates to less
than 1:1 (i.e., access to hard drive becomes as slow or slower than access to CD-ROM). Accordingly, the
hard drive preferably is implemented as a contiguous area of hard drive physical address space. In
addition, data from a CD-ROM data request is stored in contiguous sectors on the hard drive to avoid .
fragmentation.

With a high capacity cache, another problem is the latent period of time before the improved
performance is realized. For example, with a 680 MB CD-ROM it may take several hours of use before a
significant portion of the cache is filled. It would be inefficient to suffer such latency every time one powers
up or swaps optical media. To address the media swapping problem, tags are defined using media disk
information. In addition a directory of data for multiple optical disks is maintained in cache. The tag includes
an identifier unique to the CD-ROM or other optical media disk from which the associated data came. When
a CD-ROM is swapped, then re-swapped, the original data is stifl in cache and valld According to one
embodiment a FIFO method of filling cache is implemented.

To address the power shutdown problem, directory information in secondary (non-volatile) cache is
updated periodically to identify any active portion of primary cache. In the event of a power failure or
shutdown, data stored in non-volatile secondary cache remains valid.

To recover after a power failure/shutdown, the cache file is examined to reconstruct control variables.
Cached data is stored in the cache file within groups. At power on, the last active group is identified. As
data is written into the cache file in a FIFO manner, by finding the last active group, the place to start
loading new data is found. Thus, a qgick effective, recovery scheme is implemented. At most one group of
data (i.e., the last active group) is lost.

Cache Implementation

Overview:

The optical media cache 100 is implemented for a CD-ROM 70 according to a preferred embodiment.
Fig. 3 shows a partial block diagram of a microcomputer system implementing the CD-ROM cache 100.
Application programs requiring data from CD-ROM 70 are executed by CPU 20. The CPU 20 controls data
flow by directing video data to a video processor 34, audio data to a sound card 38 and graphics data to a
graphics controller 32. Typically, the CPU 20 processes conventional program data. Accordingly, there may
be four data streams (i.e., program data, video data, audio data and graphics data). Full motion video, for
example, may require a throughput of 30-60 MB per second for an application with 24-bit color, 2.3
MBf/trame (without compression) and updating at 30 frames per second (fps). Typically, the video data is
compressed to achieve the sustained throughput necessary for clear full-motion video. Sound may require
another 10 MB per second throughput before compression. To achieve the necessary sustained throughput,
companies are optimizing performance in many areas. Fig. 5 shows the layout of a conventional CD-ROM
106. A storage track 108 spirals around and in toward the center of the disk. To optimize psrformance,
programmers estimate frequently accessed portions and store it near the center of the disk 106. Data near

10

15

20

25

30

35

45

50

55

EP 0 667 579 A1

the center can be accessed more quickly than data at the outer edge. In‘addition video compression and
audio compression techniques are frequently used so that less data is needed to develop a video image or
audio sound clip. The contribution of this invention is to provide an optical media cache for storing
frequently accessed data in a faster storage medium.

Fig. 6 shows a flow chart for processing a CD-ROM request 112 according to an embodiment of this
invention. Application programs requiring data from CD-ROM 70 trigger CD-ROM requests enabling access
of data stored on a CD-ROM. Such data may be on the CD-ROM 70 or already stored in the CD-ROM
cache 100. A utility program or operating system service 110 (i.e., the cache implementation software) is
executed to implement the CD-ROM request 112. Typically, a total of one CD-ROM sector may be
accessed with a single CD-ROM request. According to the embodiment of Fig. 6, data discrimination
processing is performed at step 114 to determine at step 116 whether the CD-ROM request should use the
CD-ROM cache 100. According to alternative embodiments, cache 100 is not used (1) when transfers
occurring during a prior window of time (e.g., 1 second) have occurred at a rate exceeding a critical
sustained throughput rate (e.g., 40 KB/sec); or (2) when an estimated time to complete a CD-ROM data
request is within a specific percentage (e.g., 25%) of the estimated time to complete a hard drive disk
request.

If cache 100 is not used for this data transfer, then at step 118 data is transferred from CD-ROM to
RAM 24 or a processing unit for processing (e.g., to CPU 20, graphics processor 32, video processor 34, or
audio processor 38). The request is then complete at step 120.

If cache 100 is used for this data transfer, then a look-up key is derived at step 122. The key is formed
from an index and a sector number. The index points to an entry in a directory table specifying a particular
CD-ROM. In one embodiment, the directory table holds a value for each of up to 255 CD-ROM disks. Such
value is formed from data unique to the corresponding CD-ROM disk. Thus, the key identifies the CD-ROM
disk and sector of the data requested via the data request. If the data is already present in the CD-ROM
cache 100, the key translates to a starting location in primary and/or secondary cache using a conventional
hashing table technique. Specifically, at step 124 primary cache is tested to see if all the desired CD-ROM
data is already present in primary cache 102. If so, then at step 126 the data is read from primary cache
102 completing the request at step 120. In the event that only some of the data is found, in one
embodiment the requsst is modified to request the remainder of data. Alternatively, the entire data request
is passed on to check secondary cache 104. If all the data is not present in primary cache 102, then the
secondary cache is tested at step 128 to determine whether all or the remaining data is present in
secondary, cache. If so, then at step 130 such data is read from secondary cache 104. At step 132 the data
from secondary cache 104 is combined with the data from primary cache 102, if any. The request is then
complete at step 120.

In one embodiment, partial hits are supported. In such case, the remainder of the data request, if any, is
processed to access the remaining data from the CD-ROM 70 at step 134. At step 136, such data is then
combined with the data from primary cache 102 and secondary cache 104, if any. If partial hits are not
supported, the entire data request is passed to check secondary cache 104 or CD-ROM 70 to complete the
request. The cache 100 is then updated to store the data request at step 138. According to a preferred
embodiment, primary and secondary caches 102, 104 are updated in parallel. Conventional hashing tables,
binary trees or balanced trees are alternative methods of maintaining cross-referencing between CD-ROM
and cache locations. According to a preferred embodiment, when cache 102 or 104 fills up, data is
discarded from the respective cache using a first-in first-out criteria. Alternatively, a least-recently-used or
usage-count criteria is implemented instead. The request is then complete at step 120.

Following is more detail on data discrimination processing (step 114), the key protocol (step 122), and
cache update processing (step 138).

Data Discrimination Processing (Step 114):

Figs. 7-9 are flow charts for three alternative discrimination processing embodiments. Referring to Fig.
7, data discrimination processing embodiment A is shown. At step 150 the data request is analyzed to
determine whether the data is contiguous with data from the previous request. Data is contiguous if it is in a
CD-ROM sector adjacent to the last sector from the previous data request. If not contiguous, the data is
cached as designated at step 152. If contiguous, then at step 154 the software checks to see if data is
being transferred at a rate exceeding a critical sustained throughput. If yes, then cache is unlikely to

improve performance so the request is not cached, as designated by step 156. If no, then the request is

cached, as designafed by step 152.

10

15

20

25

30

35

45

50

55

EP 0 667 579 Al

Referring to Fig. 8, data discrimination processing embodiment B is shown. At step 160, the CD-ROM
access time is estimated based on the respective sector locations of the previous request and the current
request. At step 162 the estimated access time is tested to determine if it is within a spscific percentage
(6.9, 25%) of a hard disk access time. If not within such percentage, then the request is cached as
designated at step 164. If within such percentage, then the request is not cached as designated at step 166.

Referring to Fig. 9, data discrimination processing embodiment C is shown. At step 170, the CD-ROM
sector of the data specified in the current request is compared to the sector position of the previous request
to determine whether the request will have a small seek time. lIf not close enough, then the request is
cached as designated at step 172. If close enough, then at step 174 the data transfer rate is tested to
determine if enough data has been transferred within a time window (e.g., 1 sec) to exceed a critical
sustained throughput. If not exceeding the critical sustained throughput, then the request is cached, as
designated at step 172. It excesding the critical sustained throughput, then the request is not cached, as .
designated at step 176.

Deriving the Transfer Key (Step 122):

Accessing data in cache 100 is done via a look-up key 180. As data is to be preserved across power
failures, power shutdowns and media changes, the key includes information as to the specific CD-ROM disk
and sector for which the data request is directed. The key itself is a 32-bit variable. Referring to Fig. 10, in
one embodiment the eight highest-order bits serve as an index 182 into a CD-ROM directory 184 located in
non-volatile secondary cache 104. The remaining 24-bits 186 designate the CD-ROM sector 188 to which
the request is directed. The allocation and number of bits can be varied to support additional CD-ROMS.

The eight-bit index portion points to an entry in a 256 entry directory 184. The 256 entry directory
enables cache 100 to store data for up to 255 CD-ROM disks. One entry 188 (e.g., the last entry) is
reserved to designate that the .CD-ROM drive is empty or contains an unidentifiable disk. Other entries
provide a CD-ROM identification code for identifying a unique CD-ROM disk. Each identification code
stored in the directory is 64 bytes long. The first 60 bytes are taken as the first 60 bytes in a specific sector
of a CD-ROM disk (e.g., sector 16 - a typical header or directory sector). The last 4 bytes represent a
checksum of such sector.

The key index 182 points to the CD-ROM identification cods for the current disk. When the index points
to the last entry (i.e., entry location representing no disk or unidentified disk), the cache 100 is disabled.

Upon a CD-ROM request for which Cache 100 is active, the look-up key is derived. The highest-order
8-bits are determined by the current index. Such index is changed whenever the CD-ROM is changed. The
lowest order 24-bits are determined from the sector address within the data request. The key then is used
to determine whether the requested data is already in primary cache 102 or secondary cache 104. In one
embodiment conventional hashing tables 190 are used for translating the look-up key to corresponding
locations in cache 100. In other embodiments, binary trees or balanced trees are used.

Cache Update Processing (Step 138):

Figs. 11 and 12 show flow charts for alternative cache update processing 138 embodiments. Fig. 11 is
directed to a parallel update process 200, while Fig. 12 is directed to a two-stage update process 202.
Referring to Fig. 11 primary and secondary caches 102, 104 are updated in parallel. Two branches 204, 206
are executed during parallel update processing. Referring to primary cache processing branch 204, primary
cache look-up tables are tested at step 208 to determine whether there is enough room in primary cache
102 to store the data request. If there is not enough room, then at step 210 the data is discarded. At step
212 the look-up tables (e.g., hashing tables) are updated. If there is room in cache 102, then the look-up
tables are updated at step 212. The primary cache update branch 204 processing then is complete. At step
214, there is a wait for the secondary cache processing branch 206 to complete, if not already completed.

Referring to secondary cache processing branch 206, secondary cache look-up tables are tested at
step 216 to determine whether there is room in secondary cache 104 to store the data request. If not
enough room, then the data is discarded at step 218. Thereafter, or directly if there is enough space in
secondary cache 104, the request is tested at step 220 to determine whether it exceeds the updatable area.
If the updatable area is exceeded, then at step 222 a request is queued to update the non-volatile directory
with the new divisions. Thereafter, or directly if the request does not exceed the updatable area the data
structures (8.9., hashing tables) are updated at step 224 so this request can be found during future
accesses. Additionally, the data is checked to ses if it is adjacent to pre-existing data. If so, the new data is
concatenated with the pre-existing data. In one embodiment data is written to physical sectors of the hard

g

10

15

20

25

30

35

45

50

55

EP 0 667 579 A1

drive secondary cachs. In another embodiment tolerating fragmentation, a conventional file system is used
for writing and organizing data in cache. The secondary cache update branch 206 processing then is
complete. At step 214, there is a wait for the primary cache branch 204 processing to complets, if not
already completed. When both branches 204, 206 are complete cache update processing returns at step
226.

Fig. 12 shows a two-stage update process embodiment. At step 230, the primary cache lock-up tables
are tested to determine whether there is enough rcom in primary cache 102 to store the data request. If
enough room (i.e., yes), then at step 232 the look-up table (e.g., hashing table) structures are updated for
enabling future access to the data. If not enough room (i.e., no), then at step 234 some data in primary
cache 102 is discarded to make room for the request. According to alternative embodiments, first-in first-
out, least-recently-used or usage-count criteria are used to determine which data to discard. Then, at step
236 secondary cache look-up tables (e.g., hashing tables) are tested to determine whether there is enough
room in secondary cache 104 to store the request. If not enough room (i.e., no), then at step 238 some data
is discarded from secondary cache 104 to make room. Again, according to alternative embodiments first-in
first-out, least-recently-used or usage-count criteria are used to determine which data to discard. After data
is discarded (step 238) or directly after testing the space availability in secondary cache (step 236
answered yes), the request is tested at step 240 to determine whether the request exceeds the updatable
area (i.e., crosses over into write-protected area). If exceeded (i.e., yes), then at step 242 the request is
queued to update the non-volatile directory (e.g., portion of look-up table structures) with new divisions (i.e.,
boundaries between updatable and write-protected areas). After queuing (step 242) or directly after testing
(i.e., step 240 answered no), the secondary cache data structures are updated at step 244 to enable future

, access to the data. Then, at step 232 the primary cache look-up data structures are updated to enable

future access to the data. Cache update processing for the data request is then complete at step 246.
Data Integrity Processing:

As previously described, according to a preferred embodiment the cache 100 includes non-volatile
memory space. Thus, the contents of such space are not lost after a power failure or power shutdown.
According to one aspect of the invention, steps are taken to maintain such data as valid even after such a
power failure or shutdown. In particular, in the preferred embodiment secondary cache is updated whenever
primary cache is updated. In addition, directory tables for the cache are copied from primary cache into
secondary cache periodically to assure valid data as of at least the last copy of such information into
secondary cache 104. According to one embodiment, the copying is performed as needed within cache
update processing 200, 202 at steps 220, 222 or steps 240, 242. According to a preferred embodiment, the
directory information (i.e., DIRECTORY SECTORS) are copied into secondary cache, each time a group of
a specified number (e.g., 127) of CD ROM sectors are written into secondary cache 104.

Data integrity steps also are taken to maintain valid cached data through media changes. As previously
described, a directory of CD-ROM identification codes is stored in secondary cache 104. Data for up to 255
CD-ROMs is maintained. A variable indicating the current CD-ROM, if any; is maintained for indexing into
this table. Whenever a CD-ROM is removed, an interrupt routine changes the current CD-ROM variable to
indicate no CD-ROM is present. Whenever, a CD-ROM is inserted, an interrupt routine calculates the CD-
ROM identification code from information on the CD-ROM, then scans the directory to see if the code is
already present in secondary cache 104. If present the index to the cods is found and used for deriving the -
key variable during future data requests. If not present the identification code is stored in the directory at
the next available index number.

Avoiding Fragmentation in Secondary Cache 104:

Preferably, all fragmentation is to be avoided within secondary cache 104 so as to optimize cache
access times. As there is no significant time penalty for fragmentation in RAM-based primary cache 102,
conventional storing mechanisms are used for primary cache 102.

In the commercial embodiment, secondary cache 104 is allocated as a DOS file by the DOS operating
system. DOS is most likely to allocate the file as several discontiguous physical address areas. Thus, at the
start the file already is fragmented. It is ‘an aspect of this invention to minimize fragmentation by the
operating system and avoid schemes in which fragmentation compounds on itself. To avoid having the
operating system add to the initial fragmentation, the cache file is defined as a write-protected hidden file.
With such attributes, DOS will not allow the file to be moved around in physical address space.

10

o

15

20

25

30

35

45

50

55

EP 0 667 579 A1

To avoid fragmentation during normal operation, controls are implemented. First, when storing data in
cache 104, the prior data request CD-ROM sectors are tracked to determine wh ther the current request is
for data adjacent to the data from a prior request within an active group of the cache file. If so, it is
concatenated to the prior data so that the data is contiguous in physical address space within the cache file.
In addition, if a subsequent data request is for data which overlaps two data requests without sharing a
common starting sector, then the requested data is stored together in physical address within the cache file.
The existing data remains in cache and is valid. Thus, parts of the cache file may include redundant data.
Such practice improves average access time by making it more likely to have a complete hit in cache
(rather than partial hits).

In addition, to avoid compounding fragmentation as occurs using time-based discard mechanisms, a
modified first-in first-out (FIFO) discard method.is used for updating the cache file. For a completely
contiguous cache file, the first data written in is the first data discarded once the cache file fills. However,
for an initially fragmented cache file (i.e., DOS file) the FIFO scheme is modified so that a data request is
not fragmented between two of the non-contiguous areas of physical address space. For example, if the
cache file is formed by 3 separate physical address spaces, a data request is not divided to be stored in
more than one such area. When the first area is being overwritten and a data request occurs which will not
fit in the remaining space of the first area, the entire data request is written at the beginning of the second
area. The FIFO scheme is considered to be a "modified” FIFO scheme because a subsequent data request
will be tested to determine whether it can fit within the residual portion of the first data area. If it fits, it is
stored there. If not, it is stored in the second area overwriting the next portion based on FIFO criteria.

Cache Implementation Software

Pseudo-code for portions of the cache implementation software is included as appendix A. Cache
implementation software is a system service utility for creating and maintaining the CD-ROM cache 100.
The appendix includes four parts. Part 1 is pseudo-code for defining data structures for a DOS file
embodiment of cache 100 located on a hard drive 60. The structures are defined at initialization, including
recovery after a power failure/shutdown and start-up. Part 2 is the pseudo-code for defining support for
multiple CD-ROMs. Part 3 is the pseudo-code entry for servicing a data request. Part 4 is pseudo-code for
the portion of a data request service relating to updating cache in a manner which avoids fragmentation.

In a preferred embodiment, the cache implementation software is written in C language with in-line
assembly code in a manner providing fast, efficient device driver code as would be appreciated by a
programmer skilled in the art of DOS device driver design.

Initialization/Recovery (See Appendix Part 1):

At power-up an initialization routine checks to determine whether a DOS cache-file has previously been
defined. If not, then a file is created and parameters are set at initial values. If the file already exists, then
this is an entry following a power failure or a power shutdown. Fig. 13 shows a logical diagram of the cache-
file 250 serving as cache 100 or secondary cache 104. The file includes a cached data area 252, a header
254, a directory of CD-ROMs 184 (see Fig. 10 also), and a directory of CD-ROM sectors 256.

The header 254 includes variables MAX_DISC, DISCSECTORS, NEXTSECTOR and NEXTMARKER.
MAX_ DISC is the next index value to assign in CD-ROM directory 184. DISCSECTORS is the number of
logical disc sectors used in the cached data area 252. NEXTSECTOR is the next logical sector in the
cached data area 252 for storing data. NEXTMARKER is the next value to use as a marker for adding
entries into the directory of CD-ROM sectors 256.

The directory of CD-ROMs 184 is described with regard to part 2 of the appendix and is previously
described in the section "Deriving the Transfer Key" (Fig. 10).

The directory 256 of CD-ROM sectors correlates cached data to CD-ROM sector addresses and is the
mechanism for recovering non-volatile cache contents after a power failure or power shutdown. The cached
data area 252 is managed so as to have a single 127-sector area active at one time. This area is referred to
as an active group. The area corresponds to the size of 127 CD-ROM sectors. Once an active group is
filled, a marker is calculated and transfer keys for each of the 127 sectors are copied into the directory 256
of sectors. If a power failure/shutdown occurs before the area fills up, then the data in the active area is
invalid on recovery. As a result, only a small portion of cache is lost after a power failure or startup. The
loss is taken as a tradeoff on speed. The directory 256 of sectors could be updated with every sector write
into cache data area 252. This, however, would double the work resulting in slower performance. To achieve
desirable speed, the sector transfer key are written in the directory 256 only after the active area fills. At

11 -

20

- 28

30

35

45

50

55

EP 0 667 579 A1

such time a marker is calculated by using the NEXTMARKER value from the header 184, then incrementing
the NEXTMARKER value for a subsequent access.

Because the hard drive at which file 250 is stored is non-volatile, the contents of a file survive a power
loss. As described above, however, the active group in area 252 is invalid upon recovery. This is because
values are not stored in the directory 256 after each update of area 252. As variables in the header 254 also
may have changed before closure of the last active group, only the-MAX__DISC value of header 254 is
taken to be valid. Thus, DISCSECTORS, NEXTSECTOR, and NEXTMARKER are to be derived upon
recovery. Once derived, such information is used to derive hashing tables or other cross-referencing look-
up tables for storage in primary cache 102.

The value for DISCSECTORS is derived by allocating the DOS FAT table to determine the cache file
size, then subtracting out the DIRECTORY SECTOR size and correcting for CD-ROM DIRECTORY and
HEADER space. NEXTMARKER is derived by scanning through the directory 256 of CD-ROM sectors to
find the last group entered. As markers are assigned in incremental order, the last group is the one before a
non-successive marker number (e.g., for groups with markers 112, 113, 114, 2, 3 the last group written had
marker 114.) The NEXTMARKER then is stored as the successive number (e.g., 115). NEXTSECTOR then
is derived by identifying the offset from the start of the DIRECTORY SECTORS. The cache data area and
DIRECTORY SECTOR arsa have a one-to-one correspondence. Thus, by identifying the NEXTMARKER,
the NEXTSECTOR is easily identified. With the header information derived, the data in area 252, header
254, DISC__DIRECTORY 184 and DIRECTORY SECTORS 256 are available for normal operation once
look-up table structures (e.g., hashing tables) are derived and stored in primary cache 102.

Maintain Support For Multiple CD-ROMs: (See Appendix Part 2)

Upon initialization/recovery, the CD-ROM drive 68 is tested to ses if a CD-ROM 70 is present. If
present, then its identification code is read/derived and the DISC__DIRECTORY 184 tested to identify a
current CD-ROM index value, and if needed a new MAX_DISC value. If not present, then the index
indicates no disk present (i.e., cache disabled).

In the coded embodiment, the CD-ROM identification code is 64 bytes long. The first 60 bytes are set
to be the first 60 bytes of sector 16 of the CD-ROM. This typically is header information for the CD-ROM
and is likely to be unique to a given CD__ROM. However, to provide additional means of avoiding redundant
codes, the last four bytes of the code are set as the checksum value of such sector 16. The derived code
for the current CD-ROM is stored in the CD-ROM directory 184. The directory 184 is scanned to see if it
has already been stored. If it has, then the current index is set at the index to such previously stored value.
If not, then the next available index is assigned, and MAX_ DISC is incremented to point to the now next
available directory location.

Each time a change in media is detected (vua interrupt), the code for supporting multiple CD-ROMs is
executed to identify a current CD-ROM, if any.

Data Request Service: (See Appendix Part 3)

With the cache 100 created or recovered and a current CD-ROM identified, normal operation of cache
100 follows. In one embodiment, the cache 100 is active when a valid CD-ROM is loaded. On occasion,
however, the cache 100 may be inactivated by data discrimination processing (i.e., discriminator determines
current data request is not to be cached). Other criteria also may be implemented to inactivate the cache
100.

For normal operation, an application program running on a host microcomputer will request data from
CD-ROM. Typically this is executed as an I/O read call to the operating system. The cache implementation
software of this invention hooks into the operating system as a system service/utility to process the data
request.

Function check_cache is called every CD-ROM /O to determine whether the sectors of requested
data are already in Cache 100. Lower level routines In__cache and in__disk_cache check the primary
cache 102 for a hit and secondary cache 104 for a hit. Routines add__cache and add__disk__cache add
data to the respective caches 102, 104 and update look-up tables to enable future access.

Check__cache implements data discriminator embodiment A (see Fig. 7). Throughput of data transfers
from CD-ROM are monitored by counting a variable TICKS. Variables first__sect r and n xt_sect r are
maintained to determine whether sequential data requests are for contiguous data. If so, then the data is
stored in contiguous sectors on the hard disk to avoid fragmentation.

12

10

15

20

25

30

35

50

55

EP 0 667 579 Al

Avoiding Fragmentation: (See Appendix Part 4)

For the coded embodiment, secondary cache 104 is formed as a DOS file. A problem of using the
conventional DOS file system is that fragmentation of the cache file can occur. This would ultimately lead to
the need for defragmenting the file system, which could take many minutes. If defragmentation of the cache
file were performed, each multiple sector ¢d rom request would end up becoming a large number of
different disk requests. Since each disk request involves a seek of the head and a rotational latency, which
typically combines to take 20 milliseconds, the overall throughput from the disk drive will gradually degrade
to become worse than the CD-ROM drive. In one embodiment an entire DOS partition is allocated to the
cache file. Such approach is impractical, however, for upgrading existing systems which already have all of
the physical disk space allocated to existing partitions. In the implemented embodiment, initial fragmenta-
tion (created by the operating system) is accepted, but additional fragmentation is avoided. Avoiding
additional fragmentation is achieved by allocating disk space via the file system, then write protecting the
space so it will not be moved around by the operating system. By setting the DOS attributes for the cache
file to be SYSTEM and HIDDEN and READ-ONLY, DOS does not further fragment the cache file. it even
prevents defragmenters from moving the allocated physical sectors around.

To avoid compounding fragmentation when discarding data, additional methods are employed. When
the cache file fills up, already existing data is overwritten so that the new data can be stored. In one
embodiment space allocation discard algorithms are implemented. According to a first fit algorithm, space is
scanned for the first already allocated area which is large enough to contain the current request. Such
algorithm usually does not create additional fragmentation. In still another alternative embodiment, an exact
fit algorithm is implemented to find a previously allocated area of exactly the same size would not create
fragmentation. The problem with these fit-based algorithms are that they add processing overhead to the
cache implementation, and faliback cases are needed when space of an appropriate size is not found.

In the implemented (preferred) embodiment, a modified first-in first-out discard criteria is used. Such an
approach is fast in that it does not fail to find space. It also has the advantage of providing synergy with the
initialization methods to enable fast cache recovery upon start-up (See Appendix Part 1 for recovery
procedure). Still another benefit of the FIFO implementation is that the entire cache file needs to be filled
completely before the current sector will be re-used.

Because the cache file may have initial fragmentation, the FIFO method as implemented is modified so
that a data request is not fragmented between two non-contiguous areas of the cache file 250's physical
address space. For example, if the cache file 250 is formed by 3 separate physical address spaces, a data
request is not divided to be stored in more than one such area. If overwriting the first area when a data
request will not fit in such area's remaining physical address space, the entire data request is instead
written at the beginning of the second area. The FIFO scheme is considered to be a modified FIFO scheme
because a subsequent data request will be tested to determine whether it can fit within the residual portion
of the first data area. If it fits, it is stored there. If it doses not fit, it is stored in the second area overwriting

‘the next available portion using the same FIFQ criteria.

To detect fragmentation at the physical level, the file system is bypassed after the cache file 250 is
created. As a result, DOS's file allocation table (FAT table) is accessed to determine the actual physical
layout of the file created by DOS. Once the physical layout is available, it is possible to detect if a request
will fit in a physically contiguous manner. As discussed above, a first fit then can be performed in the
modified FIFO approach. In the case where the cache file is very fragmented, usage of the cache file will be
sub-optimal, but performance will be very close to a non-fragmented file since the only additional overhead
would be the first fit scan at the physical level (this has the same number of disk 1/0's).

Another problem is the potential for logical address space fragmentation caused by a users data access
pattern. This happens when CD-ROM Trequests occur out of sequence or where the access pattern is
different the second time the same sectors are accessed. Consider the following sequence:

10 sectors from 1000
10 sectors from 1020
10 sectors from 1010
10 sectors from 1005

The last request for 10 sectors from 1005 would not be contiguous at the logical sector level. Logical
level fragmentation of the cache file occurs when placing non-contiguous cd rom sectors adjacent to each
other. To avoid logical fragmentation, these sectors are to be stored contiguously even though every sector
is already in the cache. This is an unusual approach with surprising benefit. Conventionally it is considered

13

10

15

20

25

30

35

45

50

55

EP 0 667 579 Al

inefficient to store redundant information. However, by doing so the data is available from one data request
storage area. This results in faster access than if the data were pieced together from 2 request storages.
Fortunately, such access patterns are rare and should continue to be rare so permitting redundancy is not
likely to introduce significant inefficiencies conventionally concerned with.

Meritorlous and Advantageous Effects

One meritorious effect of this invention is to improve access time to data stored on optical storage
media. This provides particular advantage for multimedia, hypermedia, animation and other multiple data
stream applications. Another advantage is that the cache structure can be implemented with existing
resources on a microcomputer by allocating a portion of system RAM and a portion of a user's hard drive.
Cachs implementation software defines the cache structure and controls opsration. By implementing a high-
capacity cache filled up over a period of hours or weeks and maintaining the integrity of cache data across
shutdowns and CD-ROM swaps, performance improvements are maintained over the long term, (rather than
following a latent period of use after each "power on" or "media swap”). Accordingly, a cost-efficient,
technically-effective cache is implemented for impraqving access times for optical storage media.

Alternative Embodiments

According to alternative embodiments of the invention various configurations and feature subsets may
be implemented. For example, a single stage high capacity cache may be implemented using a portion of
the hard disk drive 70 or another high-capacity data structure.

In addition, in an embodiment in which the hard drive portion is allocated via a DOS flle. more

" fragmentation of cached data occurs than when allocating physical address space directly. In some

embodiments, data integrity across power failures and media changes is not supported.

Although the preferred embodiment is for accessing a CD-ROM, other optical media including
"floptical” drives, Bernoulli drives, WORM drives, CD-| drives and magneto-optical drives may be used with
the high capacity cache according to embodiments of this invention.

Although embodiments are described for a cache file or secondary cache of 10 MB or 20 MB to 140
MB, the upper limit on size is open-ended.

Accordingly, although a preferred embodiment of the invention has been illustrated and described,
various alternatives, maodifications and equivalents may be used. Therefore, the foregoing description should
not be taken as limiting the scope of the inventions which are defined by the appended claims.

APPENDIX A

Pseudo-code listing for Implementing Cache

© 1994, Ballard Synergy Corporation (Unpublished)

14

10

15

20

25

30

35

50

55

EP 0 667 579 Al

/* PART 1
INITIALIZE / RECOVER HARD-DISC-CACHE FILE (DOS-file Embodiment)

There are 4 different parts to the disk based cache
file. The bulk of it is the cached data itself, it is followed
by a directory header, which is followed by the DISC_DIRECTORY
data structure, which is followed by directory sectors. The
directory header contains values which are used by the disk
based caching code. The only field which survives across
reboots is the max_disc field, which is used to assign the next
CD-ROM DISC number. The DISC_DIRECTORY contains the 64 bytes
per DISC and the directory sectors contain the logical sector
to cd rom sector mapping tables. The cd rom sector number is
actually a composite of the CD-ROM disc number and the actual
cd rom sector. Each directory sector contains a marker and 127
cd rom sector numbers. Each cd rom sector number maps directly
to the cached data contained at the beginning of the file.

FILE LAYOUT:

CACHED DATA 4 x 512 byte sectors for each
CD-ROM sector cached
DIRECTORY HEADER See struct directory below
DISC_DIRECTORY See Part 2
DIRECTORY SECTORS One 512 byte sector for each 127
CD-ROM sectors
4 byte mérker
127 x 4 byte CD-ROM sector nunbers
. 1 byte DISC number + 3 byte actual sector

number
*/
#define DIRHEADERSIZE 4 /* size of directory header */
#define DIRSIZE 36 /* size of directory header +
DISC_SECTORS
*/

15

10

15

20

25

30

35

45

50

55

EP 0 667 579 A1

/%
The directory structure is computed during initialization
for the disk based caching code to use. Currently only the

- max_disc field is used as is. The described embodiment

supports 255 different CD-ROM discs, but this can be

changed by scanning the directory sectors during boot and
re-assigning DISC numbers and computing max_disc. This will
make it unneccesary to save and restore the directory header to
disk. It will also allow support of an arbitrary number of
CD-ROM discs over the course of time with the only limitation
being 255 discs at any one time.)

DIR.disksectors equal to the number of cd rom sectors
cached * 4. It is the maximum value of logical disk sectors

for the cached data area.

DIR.nextsector is the next logical sector which is the
starting point for finding free space or space to allocate in
the cached data area.

DIR.max_disc is the next DISC number to be used

DIR.marker is the next directory sector marker value to be

used

The marker at the beginning of each directory sector is
the key to the method in which we recreate the state of the
data structures as they were prior to system shutdown (or
crash). At any one time there is one active group of 127 cd
sectors worth of the cache data area. Once this area is
modified or deemed to be undesirable; the directory sector
corresponding to the group of 127 is written to the file. When

‘the system is shutdown and restarted, the active group at

shutdown will be found and re-activated as the first active
group after initialization. Since the most amount of data that
can be cached and then forgotten under normal circumstances is
126 cd rom sectors, this provides a very small amount of data

16

10

15

20

25

30

35

45

50

55

EP 0 667 579 Al

that will have to be re-cached relative to the overall size of
the cache data file.

Another big advantage to this method is that there is only
one extra 512 byte sector write for every 254K bytes of data
cached. . ’

Due to the fact that the marker of the adjacent sector is
one greater than the previous sector, we can detect the active
sector ry scanning all of the airectory sector’s markers and

. finding a pair with non-incrementing markers.

*/

struct directory

{

ushort max_disc; /* next DISC number to use */
ulong disksectors; /* cd_sectors cached * 4 */
ulong nextsector; /* 0 to disksectors-1 */

ulong marker; /* next ID number to use for a
‘ directory sector
*/

) DIR;

/* .
The Init(filesize) function is called once during
initialization. It is responsible for setting up all data
structures, especially the ones to support the disk based
caching. The filesize parameter is the DOS file size of the
cache data file.

The key first step is to compute the number of CD-ROM
sectors cached in the data area. Multiplying this number by 4
gives us DIR.disksectors. Once this is known, we can easily
compute the correct offsets for the different parts of the
file.

The directory header is read in to retrieve the number of
different CD-ROM discs encoded in the DISC_DIRECTORY. Then the
DISC_DIRECTORY'is retrieved from the disk file. Finally, the
directory sectors are read in and DIR.nextsector and DIR.marker

17

20

25

30

35

45

50

55

EP 0 667 579 Al

are computed while the disk caching data structures are
re-created.

*/

int Init(ulong filesize)
(.
ulong disksector; /* used for logical to physical sector
conversion %/
ulong cd_sectors; /* the number of cd sectors cached in
the data area */
ulong variable_size;/* the size of the file which varies
4 by cd_sectors */ i
ulong tablesize; /* the number of ditectory sectors */
uchar sectorbuf(512]);/* storage for a single disk sector#*/
ushort i; /* loop counter */
ulong table_entries;/* loop counter while initializing
' disk data structure*/
uchar wrapped = 0; /* flag to indicate if the markers
have wrapped around*/
last_marker = 0; /* value of the previous directory
sector’s marker */

/* subtract the directory and marker which have constant
size. The 4 bytes are for the extra marker, since the sector
starts with one */

variable_size = filesize - DIRSIZE*512 - 4;

/* since each cd rom sector is 2048-bytes and there is a
ulong for each sector, the first estimate for the size needs to
divide by 2052 #*/ ‘

cd_sectors = variable_size / 2052L;

/* the reason that the above computation of cd_sectors is
not always correct is that there is 4/127'th of a byte for each
cd rom sector occupied by the marker in each directory sector,
this means that for large files, 4/127’ths could become a large
number. We are not concerned with execution efficiency since

18

10

15

20

25

30

35

45

50

55

EP 0 667 579 A1

this needs to be done only once at initializaiioq. A simple
serial search is done */
for (i=0; 1i<30000; i++)
(.
/* compute the actual size of the variable portion of
the file */
tablesize = cd_sectors*2052L + (4 * cd_sectors)/127;

/* if it is the same as what we have from before, we
have found it */
if (tablesize == variable size)
break: : /* this usually happens on the
first iteration */

/* try the next value if we don’t have an exact match#*/

cd_sectors++;

}
if (1 == 30000) /* if we get to this value, we have no

match */
return (ERROR) ;

DIR.disksectors = cd_sectors * 4; /* convert to 512 byte
sector count #*/

/* the directory starts right after the cache data. The
first part is the directory header which contains the directory
structure */ ,

disksector = DIR.disksectors;

real_sector (&disksector) ; /* convert to physical

) sector number */

diskread (&DIR,disksector, DIRHEADERSIZE); /* read header

from file */

/* if the disksectors value from the file is not the same,
we abort */ '
if (DIR.disksectors != cd_sectors * 4)
return (ERROR) ;

10

15

20

25

30

35

45

50

55

EP 0 667 579 Al

/* now DIR.disksect rs and DIR.max_disc are set properly,
we can read in the DISC _DIRECTORY from the file. It starts
right after header */

disksector = DIR.disksectors + DIRHEADERSIZE;

real_sector(&disksector); /* convert to physical #*/

diskread (DISC_DIRECTORY,disksector,DIRSIZE-DIRHEADERSIZE) ;

/* read in %/

/* initialize the directory header values to proper
defaults */

DIR.nextsector = 0;

DIR.marker = ;;

for (table_entries=0; table_entries<cd_sectors;
table_entries+=127)
{
if ((table_entries%127) == 0) /* sectorbuf is
all used up */

/* compute logical sector to read in next */
disksector = DIR.disksectors + DIRSIZE +
table_entries/127;
real_sector (&disksector); /* convert to
' physical #*/
diskread(sectorbuf,disksector,1);/* read it in*/

/%* look at the marker to find the active directory

~

if (*(ulong *}sectorbuf == 0) /* initial value
of marker */

sector */

if (wrapped) /* illegal to have wrapped and
unused area */-
return (ERROR) ;

" else /* we have found the active one */
(

20

10

15

20

25

30

35

45

50

55

EP 0 667 579 At

/* set the nextsector to the beginning of this

group */
DIR.nextsector = table_entries * 4;

/*

set the marker to one more than the

previous one #/

DIR.marker = last_marker+l;

break; /* all done */

/* mark

all entries from this directory sector

as illegal this is because the corresponding data area has

never been used#*/

for (i=1; i<128; i++)

(
/*

add_cd_sector() will update the data

structures so that future access can be

made by the disk functions */
add_cd_sector (ILLEGAL_SECTCR) ;

/*
we
if

}
/* once
0 value

since we are blocking by 127, make sure
don’t overrun */
(table_entries+i >= cd_sectors)

break;

we have found a directory sector with a

*/

/* anything other than 0 is an illegal value */
last_marker = ILLEGAL_SECTOR;

)

/* 1f the marker does not equal one more than the previous

marker we might have found the active directory sector */

else ifA(*(ulong *)sectorbuf != last_marker+l)

{

/* if we have already wrapped or found a 0 marker, we

abort */

if (wrapped }| last_marker == ILLEGAL_SECTOR)

21 b

10

15

20

25

30

35

50

55

else

EP 0 667 579 A1

DIR.nextsector = 0;
return(ERROR) ;

/* ignore active area %/

/* if this is not the first directory
sector, we set wrépped */
if (table_entries)

wrapped = 1;

/* set the nextsector to the beginning of
this group */
DIR.nextsector = table_entries * ¢;

/* set the marker to one more than the
previous one #*/
DIR.marker = last_marker+l;

/* start a new marker sequence starting at
the current value #*/
last_marker = #*(ulong *)sectorbuf;

/* mark all entries from this directory

sector as illegal we do this to protect us

against any power failures corruputing the

inteqrity of the cached data in the active

group */

for (i=1; i<128; i++)

{

/* add_cd_sector() will update the data

structurés so that future access can be

made by the disk functions */
add_cd_sector (ILLEGAL SECTOR) ;

/* since we are blocking, make sure we

don’t overrun */
if (table_entries+i >= cd_sectors)

22

10

15

20

25

30

35

50

55

EP 0 667 579 Al

break:

)

) .
else /* update marker to the current directory

sector’s */

(

last_marker = *(ulong *)sectorbuf;

/* we need to édd all the cd sectors in this group to
the disk data structure. */
“for (i=1; i<128; i++)
(.
add_cd_sector(*(ulong *) (sectorbuf+i*4)):
/* since we are blocking by 127, make sure we
don’t overrun */ ‘
if (table_entries+i >= cd_sectors)
break;

/* do any other initialization that is necessary */

return(INITIALIZED_OK);

/*

add_disk_cache() is called whenever it is determined that
adding data to the disk cache is desired. Only the portion of
this function which deals with the directory updating will be
detailed. The rest uses standard data structure update and
accesses.

*/

add_disk_cache()
{

23

10

20

25

30

35

45

50

55

EP 0 667 579 A1l

/* tableindex is the index of the directory sector which
is active at the beginning of this function. 508 is used
because it is 4 * 127. The marker is 4 bytes which add up to
standard 512 bytes #*/

ulong tableindex = DIR.nextsector / 508;

/* do standard processing to allocate disk space from the
active group potentially advancing to subsequent groups. Data
structure updates will be performed here. [see Appendix at Part

4) */

/* at the end of all the processing, we check to see if
the active group of 127 cd sectors has advanced */

if (DIR.nextsector/508 != tableindex)

{

/* if it has, we update the directory sectors for all
the directory sectors before the current one. Under normal
circumstances only one directory sector will be written
the code is written to handle extreme cases where very large
requests are processed or areas of the disk file are skipped
due to allocation selectiveness */

while (1)

{

/* call the function which updates the directory
sector */
update_dir(tableindex*127):

/* increment the index to the next directory sector */
tableindex++;

/* check to see if we get past the last directory sector */
if (tableindex >= DIR.disksectors/508+1)
(.
/* reset the index to the beginning */.
tableindex = 0;

24

20

25

30

35

45

50

§5

EP 0 667 579 A1 -

/* if the index is the active sector, we stop */
if (tableindex == DIR.nextsector/508)
break;

/*
update_dir() is called to update a directory sector which
contains a 4 byte marker and 127 cd sector numbers. Each cd

" sector number is 4 bytes and represents an 8 bit disc number

and a 24 bit cd-rom sector number. */

void update_dir (ulong cdsectors)

{
ulong disksector;

./* compute the logical disk sector by skipping past the
cache data and the directory header and CD-ROM disc directory
and index into the appropriate directory sector */

disksector = DIR.disksectors + DIRSIZE + cdsectors/127;

real_sector (&disksector); /* convert logical sector to
. physical sector */
*(ulong *)sectorbuf = DIR.marker++; /* assign marker to
directory sector */

/* get 127 CD sector numbers which comprise this directory
sector */

get_direntry(§orbuf([sizeof(ulong)],cdsectors,127);

diskwrite(sectorbuf,disksector,1); /* write to disk */

IEE2 222222222222 222222222222 22s s

LOW LEVEL UTILITY FUNCTIONS

123222222222 2222 22 2222222222222 2]

25

10

15

20

25

30

35

45

50

55

EP 0 667 579 A1

get_direntry(ulong *buffer,ulong sector_number,ushort count)
copies count number of cd sector numbers to the specified
buffer.

put_direntry(...) copies the other way from get_direntry()

Areal_sector(ulong *disksector) converts the logical disksector

to the actual physical sector number usable by the low level
diskwrite/diskread functions.

diskwrite() and diskread() write/read physical sectors using
standard PC INT 13h functions. The cylinder/head/sector
mapping details are hidden from the caller. The sector number
is a bhysical sector number relative to the beginning of the
disk drive. The number of 512 byte sectors is specified.

add_cd_sector (cdsector) is responsible for updating the disk
caching data structures so that future queries to find the
cdsector will be able to. The order that add_cd_sector() is
called determines the location of the cdsector which is passed
in. The first one corresponds to the first 2048 bytes of the
cached data area of the file. The second call represents

the second 2K bytes, etc.

32222 3 222 22223322 R RSS2SR 2222222222222 22 2]

/*
write_dir() is called whenever a new CD-ROM disc is
detected. [See the appendix at part 2]

*/
void write_dir()
{

ulong disksector;

/* the directory starts right after the cache data. The

first part is the directory header which contains the directory

structure */

26 .

10

15

20

25

30

35

45

50

55

EP 0 667 579 A1

disksector = DIR.disksectors;

real_sector(&disksector) /* convert to physical

sector number */

-diskwrite(&DIR,disksector, DIRHEADERSIZE) ;

/* write to
disk */

/* the DISC_DIRECTORY buffer is immediately after the

directory header #*/
disksector = DIR.disksectors + DIRHEADERSIZE;

real_sector (&disksector); /* convert to physical

sector number */

diskwrite (DISC_DIRECTORY,disksector,32);

27

/* write to
disk */

10

15

20

25

30

35

50

55

EP 0 667 579 A1

/* PART 2
SUPPORT FOR MULTIPLE CD-ROM DISCS

The key to implementing support for multiple CD-ROM discs in a -
single cache data area is to have a global variable called: '
CURRENT_DISC. This variable is a 32 bit value with the most
significant 8 bits representing the current CD-ROM disc index.
This index is an offset into a directory which contains data
which is unique to a particular CD-ROM disc. 64 bytes are
allocated to identify each CD-ROM disc, 60 bytes being the
first 60 bytes of sector 16 and 4 bytes being the checksum for
sector 16. The value of FF000000 hex, represents no media in
the CD-ROM drive or an unidentified disc in the CD-ROM drive.
In either of these cases, caching to the disk is disabled. If
it is not this value, the CURRENT_DISC value is or’ed with the
requested sector value (which is guaranteed to be less than 24
bits). This way sector 16 from different discs will be sector:
XX000010 hex, where XX is the disc index. This allows support
of up to 255 different discs at a time. */

/* The following is a code fragment from In_Disk_Cache
(cd_sector) which returns YES if the cd_sector is in the Disk
Cache and NO if not */
In_Disk_Cache(cd_sector)
{ .

If (CURRENT_DISC == O0xFF000000)

return (NO)
cd_sector |= CURRENT_DISC;

/* continue normal processing using the new cd_sector */
/* different discs will never have overlapping cd_sector
valuesk/
)

/* respond_to_change() is called whenever a media change is
detected. */
void respond_to_change()

28

10

15

20

25

30

35

45

50

55

EP 0 667 579 A1

CURRENT_DISC = 0x££000000;

/* do any other appropriate processing */

/* Process_Sector(cd_sector) is called after the cd_sector is
read into transfer address from the CD-ROM drive */

long DISC_DIRECTORY[256]([16); /* Global directory for DISC’s */

Process_Sector(cd_sector,transfer address)
{

int i,3; /* loop counters */

long sum; /* checksum value */

if (cd_sector == 0x10) - /first sector read from CD-ROM
disc*/

{ ‘
/* calculate custom CRC for each 32 bit long */

for (j=sum=0; j<CD_SECTOR_SIZE/4; j++)
sum = ((sum<<l) ~ transfer_address[j]) | (sum>>31);

/* search sequetially until we find a match */
for (i=0; i<DIR.max_disc; i++)
{

/* compare the first 60 bytes, unless we don’t

match */

for (j=0; j<15; j++)
if (DISC_DIRECTORY([i][j] !=
transfer address([j] ‘)
break;

/*if the first 60 bytes matched and the checksum matches*/
if (j == 15 && DISC_DIRECTORY(i]([15] == sum)
{
/* we found the current disc in the directory */
CURRENT_DISC = (ulong)i << 24;

29

10

15

20

25

30

35

45

50

55

EP 0 667 579 Al

break:

) .
/* if i gets all the Qay to DIR.max_disc, we didn’t find a
match */
if (i == DIR.max_disc && DIR.max_disc < 255)
{
/* allocate a new disc index */
DIR.max_disc++;

/* set CURRENT_DISC to old DIR.max_disc */
CURRENT_DISC = (ulong)i << 24;

/* copy appropriate information into DISC_DIRECTORY */
for (j=0; j<15; j++)
DISC_DIRECTORY[i])[j] = transfer_address(j];
DISC_DIRECTORY(i][15] = sum;
write_dir(); /* update directory on disk file */

/* do rest of processing */

30

20

25

30

35

50

55

EP 0 667 579 A1

/* PART 3
SBERVICING A DATA REQUEST

‘Check_cache() is the function which is called every CD-ROM I/O
to see if the requested sectors are already in the cache. The
return value is the number of CD-ROM sectors which were found

at the beginning of the request. Partial cache hits not
starting at the beginning of the request are not supported in
this embodiment since in practice they are relatively rare and
they would possibly result in splitting up the request into two
separate requests.

TICKS is a global variable which is incremented every 1/18th of
a second during the PC timer interrupt.

LAST TICK is the value of TICKS during the last time

check_cache() was called

CRITICAL_RATE is an externally specified value which specifies
the cutoff transfer rate which is used to potentially disable
the disk cache. It works in conjunctions with CRITICAL TICKS.

CRITICAL_TICKS is an externally specified value which is in
units of 1/18th of a second. Its significance is that if the
CRITICAL_RATE has been sustained for CRITICAL_TICKS, the disk
cache is disabled for that I/0. If CRITICAL TICKS

is equal to 0, then the transfer rate discriminator is
disabled.

THROUGHPUT is the calculated throughput in kilo bytes per
second.

START_TICK is the value of TICKS at the beginning of the
current range of "sequential" requests.

FIRST_SECTOR is the value of cd_sector at the beginning of the
current range of "sequential" requests.

31

10

15

20

25

30

35

45

50

56

EP 0 667 579 A1l

NEXT_SECTOR is the sector which would make this r quest
contiguous on the CD-ROM disc to the last request. The current
implementation enforces a very strict rule that NEXT_ SECTOR
must be exactly adjacent to the previous request. It is
possible to relax this condition a bit and tolerate a
relatively small forward gap.

"sequential” requests means that starting at FIRST_SECTOR
occuring at START _TICK, all subsequent requests have been
adjacent using the NEXT_SECTOR test. 1In this implementation,
this means contiguous on the CD-ROM disc.

If SKIPPED is set after calling check_cache(), the disk cache
is disabled for this I/0. This is used by the cache program to

make sure that it is not added to the disk cache.

The following are lower level functions which are used by
check_cache():

in_cache(transfer_address,cd_sector,count) is the function
which checks the RAM cache for a cache hit. It returns the
number of sectors that were found at the beginning of the
request.

add_cache(transfer_address,cd_sector,count) is the function
which adds data to the RAM cache so that future calls to
in_cache() will find the data

in_disk_cache(transfer_address,cd_sector,count) is the function
which checks the DISK cache for a cache hit. It returns the
number of sectors that were found at the beginning of the

request.
add_céche() and add_disk_cache() will be called when

appropriate by the cache program upon completion of the actual
1/0 by the CD-ROM drive.

32

10

20

25

30

35

50

55

EP 0 667 579 A1l

check_cache(cd_sector,count, transfer_address)

(

int n; /* the number of cd sectors found
4 in RAM + disk cache */
int diskn; /* the number of sectors found in
the disk cache #/
long throughput; /* temporary storage for transfer

rate calculations */

SKIPPED = 0; /* the default is to enable the
disk cache */

if (CRITICAL_TICKS != 0) /* if it is 0, disable
discriminator #*/

/* The following check computes the number of ticks
64K of data used at the CRITICAL_RATE would take. If more than
that many ticks have elapsed since the last request, we make
sure that the disk cache will be enabled for this I/O. We also
synchronize future rate computations to this I/O0 request. */

if ((TICKS-LAST_TICK) > (64L * 18L)/CRITICAL_RATE)

{

synchronize:
THROUGHPUT = 0; /* this gquarantees disk
cache is enabled */
START TICK = TICKS; /* make this request the

start of range */
FIRST SECTOR = cd_sector;/*ditto for cd_sector*/

}
/* this is the strict test for adjacency. It can be

relaxed somewhat via "cd_sector < NEXT_SECTOR || cd_sector >
NEXT_SECTOR+delta" where delta is a relatively small number
such as 15 */

else if (cd_sector != NEXT_SECTOR)

{
/* if we fail the NEXT_SECTOR test, synchronize */

goto synchronize:

33

10

15

20

25

30

35

45

50

55

EP 0 667 579 At

/* we need to compute the cumulative transfer rate */

else

{

/*

It is possible for I/0’s to happen during
the same tick. 1In this case, we approximate
that it happened 2/3 of a tick after the last
I/0. Since each cd sector is 2 kilobytes one
sector in a tick is 36 kilébytes per second ==
one sector in 2/3 of a tick is 54 kilobytes per
second. -

The value of 2/3 is somewhat arbitrary, but
it is not that critical since this is only for
the very few I/0’s all happening during the same
tick of the range.]

In the normal case that the starting tick
of the range is one or more ticks before now, we
ignore the partial tick and simple use the .
difference. Again since the CRiTICAL_RATE can
be set arbitrarily, the slight variance from
computed kilobytes per second versus actual is
not that important. The important thing is to
always use the same method to calculate the
throughput. 1In any event over long periods of
tiﬁe, the importance of the fractional tick
diminishes to zero. */
if (TICKS == START_TICK)
(cd_sector-FIRST_SECTOR) * 54;

throughput
else

throughput

(((cd_sector-FIRST_SECTOR) *36) / (TICKS-START_TICK)) ;

/*
If we ever dip below the critical transfer
rate, we synchronize to the current I/0. It is
also possible to be a little more lenient and
keep a moviﬁg average of the most recent
transfer rates. this would work better, but due

34

10

15

20

25

30

35

45

50

55

EP 0 667 579 A

to ex cution spéed requirements on 386 machines,
we are using a method which is very fast to
compute */
if (throughput < CRITICAL_RATE)

goto synchronize;

else .
THROUGHPUT = throughput; /* set THROUGHPUT
to current value*/
}
LAST TICK = TICKS; /* set LAST_TICK

to "now" */

NEXT_SECTOR = cd_sector + count; /* NEXT_SECTOR is

© oy

right past this I/0 */

The following is the big test of sustained
througput exceeding a critical rate for a

critical amount of time */

if (THROUGHPUT > CRITICAL_RATE'&& (TICKS~START_TICK)
> CRITICAL_TICKS)

{
/*

if we meet these conditions, disable the disk

cache for this I/0%/

SKIPPED = 1;

/* check the RAM cache for a cache hit #*/
if ((n=in_cache(transfer_address,cd_sector,count)) != 0)

{

/* if all of the sectors were found, we are done */

if (n == count)

return(count) ;

/* if we get here, we need to adjust the request for

subsequent cache accesses */
transfer_address += n * 2048; /* skip data buffer

which is used */

cd_sector += n; /* skip past on CD-ROM disc */

35

10

15

20

25

30

35

45

50

55

EP 0 667 579 A1
count -= n; /* adjust remaining cd_sectors */

/* if SKIPPED is set, we need to disable the disk cache #*/
if (SKIPPED == 0)
{
/* see how many cd sectors are in the disk cache */
) diskn =
in_disk_cache(transfer_address,cd_sector,count);

/* the following is an optional step, it adds the
data found in the disk cache to the RAM cache. It
can be eliminated if the RAM cache is deemed to be
too small to hold duplicate data */
if (diskn)

add_cache (transfer_address,cd_sector,diskn)};

/* adjust the count of cd sectors found */
n += diskn;

/* we are done if we have already transferred
everything we need */
if (n == count) ,

return(count) ;

/* return the number of cd sectors actually transferred
from the beginning of the original request */
return(n):;

36

10

15

20

.25

30

35

45

50

55

EP 0 667 579 A1

/* PART 4
AVOIDING FRAGMENTATION (PART OF BERVICING DATA RﬁQUEBT)

This part includes pseudo-code for In_disk_cache,

add _disk_cache and several lower level utilities.
In_d1sk_cache(transfer_address,cd_sector,cohnt) is

the function which checks the DISK cache for a cache hit. it

returns the number of sectors that were found at the beginning-

of the request. The cd_sector is the actual cd disc sector

without the CURRENT DISC combined with it.
Add_disk_cache(transfer_address,cd_sector,count) is

called to add data to the disk based caching upon completion of

the actual I/0 by the CD-ROM drive. The cd_sector is the actual

cd disc sector without CURRENT DISC. In rare cases

add_disk_cache() might not be able to cache and will not

do anything. It returns 0 for failure and count if successful.
In_disk_cache and add_disk_cache are the main

external entry poinfs for the disk based caching capability. */

add_disk_cache(transfer_address,cd_sector, count)
{

ulong i; /* loop counter */

ushort iterations = 0; /* a counter to limit search for
appropriate space#*/

ulong realsector; /* a place to compute the
physical disk sector */

ushort wrapped = 0; /* a flag to remember going back

to beginning */

/* if we don’t have an identifiable disc, abort #*/
if (CURRENT_DISC == 0xff000000L)
return(0);

/* compute the cd_sector key to be used with the data

structure */
cd_sector |= CURRENT_DISC;

37

10

15

20

25

30

35

45

50

&5

EP 0 667 579 A1l

/* search until a physically contiqguous area in the cache
file is found */
while (1)

{

/* make sure we fit within the logical limits of the
cache file */
if {(DIR.nextsector/4+count > DIR.cd_seétors)
{
/* check if we have aiready searched the whole cache
file */
if (wrapped)
{
/* can’t allocate large enough contiguous space */
return(0) ;

/* wrap to the beginning */
DIR.nextsector = 0;

/* remember that we have wrapped to the
beginning */
wrapped = 1;

/* now check for physical contiguity */

realsector = DIR.nextsector;

if ((i=real_sector(&realsector)) >= count#*4')
break; - /* we found it! */

if (++iterations >= 10)
return(0); /* too much local fragmentation,
can’t allocate */

/* skip to the beginning of the next physical

fragment */
DIR.nextsector += 1i:

38

10

15

20

25

30

35

45

50

55

EP 0 667 579 A1

if ((i=find_cd_sector(cd_sector)) != ILLEGAL_SECTOR &&
contiguous_length(i) >= count)

/* a contiguous block already exists for the entire
request */
return(0) ; /* nothing to do */

/* the code above provides enough physically contiguous
disk sectors to store count cd rom sectors */
set_cd_index (DIR.nextsector/4); '

/* add each cd_sector to the data structure */
for (i=0; i<count; i++,cd_sector+¥)
add_cd_sector(cd_sector);

diskwrite(transfer_address,realsector,couht*4): /* write
to cache */

DIR.nextsector += count * 4;

/* do any other processing needed #*/
.... /* do directory sector update [see DIR.DOC] */

return(count);

in_disk_cache(transfer_address,cd_sector,count)

{

ulong index; " /* loop counter */
ulong 1len; /* maximum number of physically
contiguous sectors*/

ulong realsector; - /* a place to compute the
physical disk sector #*/

/* if we don’t have an identifiable disc, so abort */

if (CURRENT_DISC == 0xff000000L)

return(0) ;

39

10

15

20

25

30

35

45

- 50

55

EP 0 667 579 A1

/* compute the cd_sector key to be used with the data
structure */)
cd_sector |= CURRENT_DISC;

/* make sure at least 1 sector is in the disk cache %/
if ((index=find_cd_sector(cd_sector)) == ILLEGAL_SECTOR)
return(0);

/* compute how many sectors are physically contiguous #*/
if ((len=contiguous_1ength(index)) < count)

count = len;

realsector = index * 4; /* compute logical sector */
real_sector(&realsector): /* convert logical to
physical */
diskread(transfer_address,realsector,count#*4); /* read
M from cache */

return(count) ;

/*

'Y X222 X233 2222223222222 2223
LOW LEVEL UTILITY FUNCTIONS
Y232 22322322223322232 2232322220

real_sector(uléng *disksector) converts the logical disksector
to the actual physical sector number uséble by the low level
diskwrite/diskread functions. It returns the number of disk
sectors left in this physical fragment.

diskwrite() and diskread() write/read physical sectors using
standard PC INT 13h functions. The cylinder/head/sector
mapping details are hidden from the caller. .The sector number
is a physical sector number relative to the beginning of the
disk drive. The number of 512 byte sectors is specified.

add_cd_sector (cdsector) is responsible for updatiné the disk
caching data structures so that find_cd_sector(cdsector) will

15

20

25

30

35

45

50

55

EP 0 667 579 Al

find cdsector. The order that add_cd_sector() is called
determines the location of the cdsector which is passed in.

The first one corresponds to the first 2048 bytes of the cached
data area of the file. The second call represents the second
2K bytes, etc. This sequential nature can be overridden with a
call to set_cd_index() below. This function is also
responsible for maintaining the validity of contiguous_length()
below.

set_cd_index(cdindex) works in conjunction with add_cd_sector()
and makes the next call to correspond to the cdsector which is

passed in.

find_cd_sector (cdsector) is responsible for looking up the
cdsector which is passed in and returning the cd index which is
compatible with set_cd_index(). ILLEGAL SECTOR is returned if
the cdsector can’t be found. The returned cd index * 4 is the
logical disk sector number which can be used with real_sector
to convert it to a physical sector. This function needs to
make sure the the cdindex of the largest contiguous block of
cdsectors is returned. ‘

contiguous_length(cdindex) returns the number of consecutive cd
sectors cached starting with cdindex. cdindex is compatible
with set_cd_index() ‘s parameter and find_cd_sector()’s return

value.

The group of functions: add_cd_sector(), set_cd_index(),

find cd_sector(), contiguous_length() can be implemented via a
variety of standard ways. .The simplest would be to have the
following data structure with the followihé macros and
functions implementing a linear search. */

struct cdsector

(
ulong contiguous; /* value used by
: (set_)contiguous_length() */

4

10

15

20

25

30

35

45

50

55

EP 0 667 579 A1

ulong cdsector; /* value used by add/find_cd_sector
and set_cd_index */
)} CDSECTORS [MAXCDSECTORS] ;

ulong cd_index = 0; /* value used to access CDSECTORS */

/* The following three functions are so simple, they can be
macros */

#define set_cd_index(index) (cd_index = index)

$#define contiguous_length(index) CDSEéTORS[index].contiguous

add_cd_sector(ulong cdsector)
{

ulong i,disksector,realsector;

/* first we set the current entrv with the parameter value */
CDSECTORS [cd_index].cdsector = cdsector;

/* the contiguous length starting at this index is 1 */
CDSECTORS [cd_index].contiguous = 1;

realsector = cd_index * 4; /* this is the logical disk
sector */
real_sector (&realsector); /* convert logical to physical*/

/* we need to scan backward to update the contigquous

length fields */ '

if (cd_index > 0) /* no need if this is the first
entry */

/* we will scan backward making sure we are
contiguous */

for (i=cd_index-1; i>=0; i--) /* stop when we reach
A the beginning */

/* decrement the value to be the previous

adjacent cd rom sector cdsector - decrement the
physical disk sector to previous cd rom area */

42

10

20

25

30

35

50

© 85

EP 0 667 579 A1

realsector -= 4; /* 4 x 512 bytes for one cd
rom sector */

/* with the cache file potentially fragmented,
it is possible to have a discontinuity on the
physical disk even though at the logical disk
level it is contiguous */

disksector = i * 4; /* this is the logical disk

sector */
real_sector(&disksector); /* convert logical
to physical */

/* if both the cdsector and diskphysical match
the previous adjacent entry, then we need to
update the contiguous length */

if (CDSECTORS[i].cdsector == scan_cd &&

disksector == realsector)

CDSECTORS [i].contiguous++;
else /* we have detected a discontinuity */

break; /* we can stop updating */

/* increment the index to be the subsequent adjacent entry */

cd_index++;

find_cd_sector (ulong cdsector)

{

ulong i,maxindex,maxlength = 0

/* we need to search to the end of the data structure,
since there could be duplicate entries for cdsector. We
want to return the index to the entry with the largest

amount of contiguous sectors

for (i=0; i<MAXCDSECTORS; i++)
{

10

15

20

25

30

35

45

50

55

EP 0 667 579 Al

/* We found a match! #/
if (CDSECTORS[i].cdsector == cdsector)

{
/% check to see if this is the best one yet #/
if (CDSECTORS([i]).contiguous > maxlength)
{
/% if it is, we need to save the value and
index for later 2/
maxlength = CDSECTORS[i].contiguous;
maxindex = i;
}
}

/* if maxlength is 0, we couldn’t find any match #/
if (maxlength == 0)
return (ILLEGAL_SECTOR) ;

/% if we get here we maxindex is the best match #/
return(maxindex) ;

Claims

A cache apparatus for storing data for a plurality of optical disks (70) accessible to enable either one or
both of faster access time or faster transfer rate, comprising:

(a) a two-level cache (100), comprising a primary cache (102) for stonng data for a current optlcal
disk and a secondary cache (104) for storing data for a plurality of optical disks, the secondary
cache comprising a first portion of a hard disk drive (60); and -
(b) digital processing means (20) for executing a computer program which processes a current
optical disk data request;

the processing means defining data structures in the two-level cache (100), comprising:
(i) a first data structure (184) for storing a plurality of respective optical disk identification codes;
(i) an index (182) pointing into said first data structure to identify a current optical disk;
(iii) an optical disk sector address (186) for data spscified in a current data request associated with
said current optical disk; and
(iv) a second data structure (190) for mapping data-request data in said two-level cache (100) to a
location on an associated optical disk;

the processing means (20) processing an optical disk data request by comprising the steps of:
(i) maintaining the index to identify the current optical disk (70); ’
(i) determining the optical disk sector address (186) from the current data request;
(iii) storing data-request data for the current data request in said two-level cache (100) when not in
said two-level cache; and
(iv) updating said second data structure (190) to enable the stored data-request data to be later
accessed directly from said two-level cache.

10

15

20

25

30

35

45

50

§5

10.

EP 0 667 579 A1

The cache apparatus of claim 1, in which the step of maintaining the index comprises the steps of:

identifying removal of a first optical disk from the optical disk drive;

identifying insertion of a second optical disk into the optical disk drive;

determining an identification code corresponding to said second optical disk;

checking the first data structure (184) to determine whether said identification code is already
present;

when already present,then setting the index (182) to refer to said already present identification
code; and

when not already present adding said identification code to said first data structure (184) and
setting the ‘index (182) to refer to said added identification code.

The cache apparatus of claim 1, in which valid data stored in said first portion for a first optical disk
remains valid and accessible following a change of optical disks from a second optical disk back to the
first optical disk.

The cache apparatus of claim 1, in which data stored in said first portion for a first optical disk remains
valid and accessible once power is restored after either one of a power failure or power shutdown.

The cache apparatus of claim 1, in which the computer program step of storing comprises the step of
selecting locations in secondary cache to overwrite (218, 238) using first-in first-out criteria.

The cache apparatus of claim 1, in which the executed computer program further comprises the step of
retrieving data from the two-level cache when all the data specified by the current data request is
present in the two-level cache and the two-level cache is active.

The cache apparatus of claim 1, in which the executed computer program further comprises the step of
retrieving data from the two-level cache when any of the data specified by the current data request is
present in the two-level cache and the two-level cache is active, and wherein the rest of the data is
retrieved from the optical disk.

A method for storing data in non-volatile cache memory received from a plurality of optical disks,
comprising the steps of:

defining data-contro! structures, comprising:

a first data structure (182) for storing a plurality of respective optical disk identification codes;

an index (182) pointing into said first data structure to identify a current optical disk;

an optical disk sector address (186) for data-request data specified in a current data request
associated with said current optical disk; and

a second data structure (190) for mapping data-request data in said non-volatlle cache memory to
a location on an associated optical disk;

maintaining the index (182) to identify the current optical disk;

determining the optical disk sector address (186) from the current data request;

storing data-request data for the current data request in the non-volatile cache memory (100); and

updating (200, 202) said second data structure to enable the stored data-request data to be later
accessed directly from the non-volatile cache memory.

The method of claim 8, in which the step of maintaining the index comprises the steps of:

identifying removal of a first optical disk from the optical disk drive;

identifying insertion of a second optical disk into the optical disk drive;

determining an identification code corresponding to said second optical disk;

checking the first data structure to determine whether said identification code is already present;
and

when already presentthen setting the index to refer to said already present identification code; and

when not already present, adding said identification code to said first data structure and setting the
index to refer to said added identification code.

The method of claim 8, in which valid data stored in said first portion for a first optical disk remains
valid and accessible following a change of optical disks from a second optical disk back to the first
optical disk.

45

15

20

25

30

35

45

50

55

1.

12.

13.

14.

15,

16.

17.

EP 0 667 579 A1

The method of claim 8, in which data stored in said first portion for a first optical disk remains valid and
accessible once power is restored after sither one of a power failure or power shutdown.

The method of claim 8, in which the step of storing comprises the steps of:

selecting address locations in the cache memory for the data-request data to overwrite (218,238)
using first-in first-out criteria; and

storing (224) all data from a first data request in contiguous phys:cal address locations.

The method of claim 12, further comprising for a second data request sequentially succeeding the first
data request and specifying data on the optical disk adjacent to data from the first data request, the
step of concatenating (224) all data from the second data request with the data from the first data
request, so that succeeding first and second data requests to adjacent data are stored in contiguous
address space within the cache memory (100).

The method of claim 12, further comprising for a second data request partially overlapping opiical disk
address space for the first data request, the step pf updating the cache memory to store all data from
the second data request so as to permit redundant storage of optical disk data.

A cache apparatus for storing data for an optical disk, comprising:

a first portion (104) of a non-volatile memory (60);

a digital processing means (20); and

wherein the digital processing means (20) allocates the first portion (104) to comprise: }

a first area (252) for storing cached data organized into a plurality of groups of cached data;

a second data structure (256)for storing a marker and a plurality of optical disk sector addresses;
and '

wherein said digital processing means (20) executes a first computer program for recovering a
substantial portion of stored cached data (252) after a restoration of power, the computer program
comprising the step of:

determining the approximate number of valid optical storage device sectors stored in the first area
(252);

aefining a next marker (254) unique to all valid markers;

deriving a next location in the first area (252) for storing cached data; and

wherein said digital processing means executes a second computer program for processing a
current data request for data-request data.

The cache apparatus of claim 15 which stores data for a plurality of optical disks and in which the first
portion (104) is allocated 'to further comprise:

a third area (184) for storing a plurality of respective optical disk udentlflcatlon codes; and wherem
the second area (256) further comprises means for associating an optical disk sector addresss to a
corresponding optical disk.

The cache apparatus of claim 16, in which the first portion (104) forms a secondary cache, and further
comprising a primary cache (102), the digital processing means allocating the primary cache (102) to
comprise: (i) an index (182) pointing into said third area to identify a current optical disk; (ii) an optical
disk sector address (186) for data specified by the current data request; and (jii) a look-up logical
structure (190) for mapping data-request data in said first area (252) of said first portion (104) of non-
volatile memory to a location on an associated optical disk; and in which said second computer
program comprises the steps of:

identifying removal of a first optical disk from the optical disk drive;

identifying insertion of a second optical disk into the optical disk drive;

determining an identification code corresponding to said second optical disk;

checking the third area to determine whether said identification code is already present;

when already present,then setting the index to refer to said already present identification code;

when not already present, adding said identification code to said third area and setting the index to
refer to said added identification code;

determining the optical disk sector address (186) from the current data request;

storing data-request data for the current data request in said first area (252) of said first portion
(104) of non-volatile memory; and

15

20

25

30

35

50

85

18.

19.

20.

21,

22,

23.

EP 0 667 579 Al

updating said look-up Idgical structure (190) to enable the stored data-request data to be later
accessed directly from the cache apparatus (100).

A caching method for storing data for an optical disk (70) in a non-volatile memory (104), comprising
the steps of:

allocating first data structures comprising:

a first area (252) for storing cached data organized into a plurality of groups of cached data; and

a second data structure (256) for storing a marker and a plurality of optical disk sector addresses;
and

determining the approximate number of valid optical storage device sectors stored in the first area
(252);

defining a next marker (254) unique to all valid markers; and

deriving a next location in the first area (252) for storing cached data; and

processing a current data request for data-request data.

The caching method of claim 18 which stores data for a plurality of optical disks, and in which the
allocated first data structures further comprise:

a third area (184) for storing a plurality of respective optical disk identification codes; and in which
the second area (256) further comprises means for associating an optical sector address with a
corresponding optical disk.

The caching method of claim 19 for storing data in a two-level cachs (100) comprising a primary cache
(102) and a secondary cache (104), the secondary cache (104) comprising non-volatile memory;

wherein the first data structures (252, 184, 254, 256) are allocated in secondary cache;

wherein second data structures are allocated in primary cache comprising:

an index (182) pointing into said third area (184) to identify a current optical disk;

an optical disk sector address (186) for data specified by the current data request; and

a look-up logical structure (190) for mapping data-request data in said first area (252) of said
secondary cache (104) to a location on an associated optica! disk (70).

The caching method of claim 20, further comprising the steps of:

maintaining said index to identify the current optical disk;
and

wherein the step of processing a current data request comprises the steps of:

determining the optical disk sector address from the current data request; and

storing data-request data for the current data request in said first area (252) of said secondary
cache; and ’

updating said look-up logical structure (190) to enable the stored data-request data to be later
accessed directly from the cache apparatus.

The caching method of claim 21, in which the step of maintaining the index comprises the steps of:
identifying removal of a first optical disk from the optical disk drive;
identifying insertion of a second optical disk into the optical disk drive;
determining an identification code corrasponding to said second optical disk;
checking the third area to determine whether said identification code is already present;
when already present,then setting the index to refer to said already present identification code; and
when not already present, adding said identification code to said third area and setting the index to
refer to said added identification code.

A discriminatory cache apparatus for storing data requested from an optical disk mass storage device,
comprising: ‘ '

a two-level cache (100), comprising a primary cache (102) for storing data for a current optical disk
(70) and a secondary cache (104) for storing data for a plurality of optical disks (70), the secondary
cache (104) comprising a first portion of a hard disk drive (60), the hard disk drive (60) having either
one or both of an access time or transfer rate rated faster than same for the optical disk drive (70); and

digital processing means (20) for executing a computer program (110) which processes a current
optical disk data request comprising the steps of:

determining (114) using data-length-independent criteria whether the current data request is likely

47

20

25

30

35

50

55

24.

25.

26.

27.

EP 0 667 579 Al

to improve optical disk access time;

using (116) the two-level cache for the current data request when said criteria indicates optical disk
access time is likely to improve;

retrieving (126, 130) data specified by the current data request from the two-level cache when the
two-level cache is used for the current data request and data requested is present in the two-level
cache;

retrieving (118, 134) data specified by the current data request from the current optical disk when
not retrieved from the two-level cache; and

for data retrieved from the current optical disk while the two-level cache is in use, updating (138)
the two-level cache to enable future access to the retrieved data directly from the two-leve! cache.

The cache apparatus of claim 23, in which said step (114) of determining comprises the steps of:

deciding (150) whether the current data request is for data contiguous to data from a previous data
request; and

deciding (154) whether optical disk I/O occurring within a prior first window of time exceeds a first
throughput; and

wherein said criteria for the current data request indicates a hkellhood of improved optical disk
access time (152) for each one of the following conditions: (i) data for the current request is not
contiguous with data from said previous data request; or (ii) the data for the current data request is
contiguous and optical device I/O occurring within said prior first wmdow does not exceed the first
throughput.

The cache apparatus of claim 23, in which said step (114) of determining comprises the steps of:
estimating (160) optical disk access time for the current data request based upon data locations
specified by the current data request and by a preceding data request in which the optical disk was
accessed; and
wherein said criteria (162) for the current data request indicates a likelihood of improved optical
disk access time (164) when the estimated access time is not within a first percentage of the hard disk
drive access time.

The cache apparatus of claim 23, in which said step (114) of determining comprises the step of:

“estimating (170) optical disk access time for the current data request based upon locations
specified by the current data request and by a preceding data request‘in which the optical disk was
accessed; and

deciding (174) whether optical disk /O occurring within a prior first window of time exceeds a first
throughput;

wherein said criteria for the current data request indicates a likelihood of improved optical disk
access time (172) for the current data request for each of the following conditions: (i) the estimated
access time is not within a first percentage of first storage device access time; or (ii) mass storage
device I/O occurring within a prior first window of time does not exceed a first throughput.

A discriminatory cache apparatus for storing data requested from an optlcal disk mass storage device,’
comprising:

a two-level cache (100), comprising a primary cache (102) for storing data for a current optical disk
(70) and a secondary cache (104) for storing data for a plurality of optical disks (70), the secondary
cache (104) comprising a first portion of a hard disk drive (60), the hard disk drive (60) having sither
one or both of an access time or transfer rate rated faster than same for the optical disk drive (70); and

digital processing means (20) for executing a computer program (110) whnch processes a current
optical disk data request comprising the steps of:

retrieving (126, 130) data specified by the current data request from the two-level cache when
present in the two-level cache;

retrieving (118, 130) data specified by the current data request from the current optical-disk when
not retrieved from the two-level-cache; and

for a current data request in which data is retrieved from the current optical disk, determining using
data-length-independent criteria whether the current data request is likely to improve optical disk
access time, and

when the data-length-independent criteria indicates that optical disk access time is likely to be
improved, updating (138) the two-level cache to enable future access to the retrieved data directly from

48

10

15

20

25

30

35

4 .

50

55

28,

29,

30.

EP 0 667 579 Al

the two-level cache; and
when the data-length-independent criteria indicates that optical disk access time is not likely to be
improved, not updating the two-level cache for the current data request.

The cache apparatus of claim 27, in which said step of determining comprises the steps of:

deciding (150) whether the datd request is for data contiguous to data from a previous data
request;

deciding (154) whether optical disk /O occurring within a prior first wmdow of time exceeds a first
throughput;

wherein the criteria indicates a likelihood of improved optical disk access time (152) for each one of
the following conditions: (i) data for the current request is not contiguous with data from said previous
data request; or (i) the data for the current data request is contiguous and optical device /O occurring
within said prior first window does not exceed the first throughput.

The cache apparatus of claim 27, in which said step of determining comprises the steps of: .
estimating (160) optical disk access time for the current data request based upon data locations
specified by the current data request and by a preceding data request in which the optical disk was
accessed; and
wherein the criteria (162) indicates a likelihood of improved optical disk access time (164) when the
estimated access time is not within a first percentage of the hard disk drive access time.

The cache apparatus of claim 27, in which said step of determining comprises the step of:

estimating (170) optical disk access time for the current data request based upon locations
specified by the current data request and by a preceding data request in which the optical disk was
accessed; and

deciding (174) whether optical dISk I/O occurring within a prior first window of time exceeds a first
throughput;

wherein the criteria mdncates a likelihood of improved optical disk access time (172) for each one of
the following conditions: (i) the estimated access time is not within a first peroentage of first storage

. device access time; or (i) mass storage device I/O occurring within a prior first window of time does not

31.

exceed a first throughput.

A method of discriminating among data requests to determine whether a current data request
specifying data on a mass storage device is to be stored in cache, comprising the steps of:

deciding (150) whether the current data request is for data on the mass storage device contiguous
to data from a previous mass storage device data request;

deciding (154) whether mass storage device /O occurring within a prior first window of time
exceeds a first throughput; and

storing (152) data for the current data request in cache upon satisfaction of sither of the following
conditions: (i) data for the current request is not contiguous with data from said previous mass storage
device data request; or (ji) the data for the current request is contiguous with data from said previous
mass storage device data request and mass storage device I/O occurring within said prior first window
does not exceed the first throughput.

. A method of discriminating among data requests to determine whether a current data request

specifying data on a mass storage device is to be stored in cache, comprising the steps of:

estimating (160) access time for the mass storage device based upon locations of data specified
by (i) the current data request and (ji) a preceding data request in which the mass storage device was
accessed; and

storing (164) the data for the data request in cache if the estlmated access time is not within a first
peroentage of first storage device access time.

A method of discriminating among data requests to determine whether a current data request
specifying data on a mass storage device is to be stored in-cache, comprising the steps of:

estimating (170) access time for the mass storage device based upon locations of data specified
by (i) the data request and (ii) a preceding data request in which the mass storage device was
accessed;

deciding (174) whether mass storage device /O occurring within a prior first window of time

49

10

15

20

25

30

35

45

50

55

EP 0 667 579 A1

exceeds a first throughput; and

storing (172) data for the current data request in the first portion upon satisfaction of either of the
following conditions: (i) the estimated access time is not within a first percentage of first storage device
access time; or (i) mass storage device I/O occurring within a prior first window of time does not
exceed a first throughput.

50

EP 0 667 579 A1

30130 FOVH0LS UMD UNa AR
/] VIO /. aw 1dd0td § @vH
R S I s 1~
[Naqon QEQEa ! “
HATIONING) HETIONING)
J Vi (/] s [~ W N umr ™~
% e a 89 H 19 u Y
A (YO ‘¥S12 VS “5) Sng NOISNYAXT V Fld
J 9 15
ol
/1 S8 o
S| Koiskvdxa s\
% I
N —(SN8-1W U Tod S]] 508 00T L_V v “
3 } } H TUET p—
. @0 0 / NV H0SST0Yd HATIONINGD INLINIO] d
J| oxnos 044 0G4 SIAAVEI
& ~ 7 /1 sng 5
: 9% v x] |
K0Bd
oM SUEIVAdS T .o A S0d o/f v
J RUVHS
or o 9
d o A ST 40SST0Nd v
| oaan | . .
; } } } 2i
i ¥4 I VIS i i) N
J S S
8 o 1" 2 1 z 07

51

EP 0 667 579 A1

52

2
- 80 %
| / S v
\ STORACE '
/P g 8 DEVICES
/ -\ 1
PROCESSOR MY fe—> (D-RON d
—u i
1 I
RECISTERS EXTERNAL DRIVE
2 R
— 8 .,)
' FLOPPY -
v 9 ot]
&
 INTERNAL '
CACHE FIG.2
FIG.3
100
/ o
OPTICAL MEDIA CACHE /
PRINARY e SECONDARY 104 |
U CACHE -
NN ?u’nu |
' ' HARD eq.,
/4 R | DRIV \so Fiow)

EP 0 667 579 A1l

AN
100 FIG.4
_ Vi ‘
CPU
CD-RO¥
/34 CACHE 102
VIDEO .
' PRIMARY)
PROCESSOR CACHE v/
38
. CD-ROM
souﬁ /=
SECONDARY
CARD CACHE
k)
/[
CRAPHICS
CONTROLLER

FIG.

53

EP 0 667 579 A1

CD-ROK
REQUEST
12

10

<

T4 U
FIG.6 oiscrumioy |
PROCESSING
122
ya
DERIVE LOOKUP
Y
126 "
[18 ALL
READ DATA FRON 1S DATA ¥
PRIARY CACHE PRIKARY
CACHE ?
130 |
: 118 — REMAINING
CET DATH READ DATA FROK DATA [N
r P SECONDARY CACKHE SECONDARY
CD-RO T CACHE ?
132
COMBINE M1 A |
RO FRILARL CET REMAINING f’“
: DATA FROK
C-ROK
! 136
CORBINE NTTH K
PRIUARY &/0R SECONDARY
IF AVAILABLE
' 138
CACHE UPDITE |/
PROCESSING
\
REQUEST

COMPLETE

54

EP 0 667 579 A1

ISInd /
JHIV2

19
SIHL

a9

094

99

I

XSI0 ¥ 40 3OVINGDYAd
TVLLR) ¥ NIHLL 1S3nb3y
KoY-00 451 3151dK0D 01

71 Sl HaR

Jsanday
0N 00

¢ JSanbay

XL 031VRIIS3
3Hl S

7

ANTND OF NOILISOd
JISV1 M0¥d aMIL X3S

Isandad

NO¥-00 ZLVRIST

i
NOLIVNIRIOSIO
Viva

84

Jsanday \a “ JSanday
SIS 71 S 300
FJiNA) % JON 00

¢ dd HONOYHL
GaNIVISNS

TRLM) V (430X3 01 KOONIA

JNIE V NIHLE QI¥Y34SAVYL

438 VIVO HONONI
SVH

154

¢ ISandyy
SNOIARYd 3HL ALl
SNONNTINGD ISNdTY
SIHL SI

054

4Ild .

NOLLYNIRIYISIO
Vg

55

EP 0 667 579 At

88}

———

))

b~
-
—
~—

_{

YOYHVR A78v) 40 ONA | #0
a1 €1 Roy-09 | €0
0l 2t Xoy-0) | 20
a i Koy-a | 10

SKO0Y-00 40 AY0JORYIQ

/

18}

0 JId

isintal | aul 15300y
SIHL A s awom
SHOW) " 10N 00

8
Y T18VL ONIHSYH

984 !

YIGRON 4003 XI0NT 09

0 ooco0oocoofd}f oooelp
ATY Y24SNVYL

010l

¢ 4id HNO¥HL
QaNmvisns

- TWOLLND ¥ 340X O ROCNLA

INIL V NIHLIA Q24¥34SNVY.

438 VIVQ BONONd

X¥33§ TIVRS
¥ 4AVH 01 JSanbey

SNOLZYd FHI OF HINONI
50 Jsanday
SIL §I

0L

NOYRIRRIISIO
Viva

56

EP 0 667 579 A1l

200
CACHE UPDATE / 0
208 FROCESSING /

208

26

IN
THERE ROON
IN PRIMARY
(ACHE ?

THERE ENOUCH
SPACE IN SECONDARY,

210

s DSCRD |/

oiscard |/ v

DATA

UPDATE LOOKUP
STRUCTURES
JS1 (eg, HASHING
A7 | mizs)

THIS REQUEST
EXCEED UPDATABLE
AREA ?

lYFS

QUEUE REQUEST
10 UPDATE
yor-voums Vo
DIRECTORY MITH
NN DIVISIONS

Y

UPLATE DATA STRUCTURES
0 FIND THIS REQUEST,
INCLUDING CONCATENATION [
IF ADIACENT 10 EXISTIKG
SECTORS

YAIT FOR BOTH
| BRANCHES 0
/| COMPLETE

214

% FIG.11

RETURN

57

EP 0 667 579 A1

02
S | 2
CACHE UPDATE L
PROCESSING FREE UP SPACE
‘ BY SELECTING
; DATA 70 DISCARD
20 FROM PRIVARY
15 L
G i
CICHE 2 e
- - W THE Bl
SPACE IV SECONDARY
238
poEs™ ./
DISCARD DATA THIS REQUEST
FRON SECONDARY EXCEED UPDATABLE
CACHE R ?
s M
[
QUEUE REQUEST
70 UPDATE
NON-TOLATILE
DIRECTORY WITH
NEX DIVISIONS
| upate o
282 A STRUCPURES 10
v v o” | FIND THIS REQUEST
' UPMTA LoOKUP DATA —
STRUCTURES 50 | - |
FUTURE REQUESTS | |
CAN BE OUND V4 -
| LOOKLP I¥ PRIKARY ‘
a ' FIG.12

RETURN

58

EP 0 667 579 Al

~4
~—e

N MARKER

1. SECTOR TRANSFER KEY

121. SECTOR TRANSFER KEY

59

o 20
© MAX. DISC _\\ v
. \ 252
o DISC. SECTORS
\ CACHED /
o NEXT SECTOR \ DATA
o NEXT MARKER | a5
*HEADER' /
DIRECTORY OF 184
D-RONS s
L WARKER ~ DISC. DIRECTORY
. SECTOR TRANSPER 1BY — 958
o (D-ROM SECTORS /
e ' "DIRECTORY SECTORS'
121, SECTOR TRANSFER KEY |
B. MARKER
f. SECTOR TRANSFER KEY
{21, SECTOR TRANSFER KEY /

. EPO FORM 1500 00.2 (POICO1)

[1)) m”“’“"‘” Patent EUROPEAN SEARCH REPORT

Application Nuzmber
EP 94 20 2313

DOCUMENTS CONSIDERED TO BE RELEVANT
Catego Citation of document with indication, where approgriate, Relevant CLASSIFICATION OF THE
4 of relevant passages toclaim | _ APPLICATION (2tQl6)
X EP-A-0 273 665 (GENERAL ELECTRIC) 15,18 GO6F12/08
Y * column 3, line 24 - column 4, line 16 * [1,23,27
A * column 5, line 55 - column 6, line 17; [8,31
figures 2-4 *
Y EP-A-0 389 151 (IBM) 1,23,27
* column 4, line 23 - column 5, line 39;
figure 3 *
A EP~A-0 475 639 (KAWASAKI STEEL) 1,8,15,
18,23,31
* column 15, line 53 - column 16, line 13
*®
* column 16, line 31 - column 17, line 13;
figures 1,3 *
TECHNICAL FIELDS
SEARCHED (Int.CL6)
GO6F
mmmmmm&“ﬂpmmm
Placs of sesrch Dats of cospletios ef the earch Exactwer
THE HAGUE 23 May 1995 Ledrut, P
CATEGORY OF GTED DOCUMENTS E mm?& magﬁh&’mw
X parteniarly relevant If taken slone sfter the filing dat:
: y relevant if combined with another D : document dted in thn application
ent of the same category L : document cited for other reasons
A : technological background
O : pop-written a

disdosure
P : intermediate document

: member of the same patent fanily, corresponding
document

	2003-12-29 Foreign Reference

